materials-logo

Journal Browser

Journal Browser

Research on Performance Improvement of Advanced Alloys (2nd Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 April 2026 | Viewed by 1078

Special Issue Editors


E-Mail Website
Guest Editor
School of Material Science and Engineering, Chongqing University, Chongqing 400044, China
Interests: plastic mechanics modeling of alloys; multi-field and multi-scale dynamic coupling simulation of complex forming process; arc additive manufacturing and remanufacturing for components
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Material Science and Engineering, Chongqing University of Technology, Chongqing 401320, China
Interests: nanostructure regulation of platinum-aluminum coatings; improvement of high-temperature service performance of thermal barrier coating system (TBCs); evaluation of galvanic corrosion of heterogeneous material connections; corrosion and protection of magnesium alloy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advanced alloys are the strong foundation of modern industry. It is a fact that advanced alloys commonly serve as structural or functional materials for innovative designs that target properties such as lightweight, heat resistance, and wear resistance, among others. Excellent functional properties are important for more attractive and efficient products in terms of improved properties or lower production costs. Consequently, it is a significant issue to adjust the microstructure and the corresponding properties of advanced alloys. Furthermore, it is necessary to explore various heat treatment processes, forming processes, and surface treatment processes, among others. Through the development of innovative processes, the service performance of advanced alloys and their components can be optimized, and solutions suitable for the needs of modern industry can be created. It is believed that the numerous innovations in treatment processes contribute significantly to the innovative design of advanced materials.

This issue aims to discuss recent advances and new developments in the relationships between various processes and the service performance of advanced alloys. The scope of the issue is not only limited to heat treatment processes, forming processes, and surface treatment processes, but also includes advanced alloy design, physical and numerical simulation, microstructure characterization, performance evaluation, etc.

Prof. Dr. Guozheng Quan
Dr. Chuntang Yu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • microstructure
  • property
  • alloy
  • metal
  • heat treatment
  • forming
  • surface treatment
  • performance
  • simulation
  • microstructural characterization
  • design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 13053 KB  
Article
Development of Ti-Nb-Mo-Zr Alloys with Low Modulus and Excellent Plasticity for Biomedical Applications
by Sen Yang, Zhiyuan Jia, Xueyan Song, Junyang He and Xiaoyong Zhang
Materials 2026, 19(2), 325; https://doi.org/10.3390/ma19020325 - 13 Jan 2026
Viewed by 321
Abstract
Metastable β titanium alloys with low elastic modulus and excellent plasticity represent highly attractive materials for biomedical stent application. Our work shows that Zr plays a crucial role in regulating β stability to significantly reduce the modulus and enhance plasticity. A series of [...] Read more.
Metastable β titanium alloys with low elastic modulus and excellent plasticity represent highly attractive materials for biomedical stent application. Our work shows that Zr plays a crucial role in regulating β stability to significantly reduce the modulus and enhance plasticity. A series of Ti-25Nb-2Mo-xZr (x = 0, 3, 9, 12 wt%) alloys were designed based on the d-electron theory, and the influence of Zr content on the microstructure, mechanical properties, and deformation mechanism were systematically investigated. The results demonstrated that as the Zr content increases, the β phase stability was significantly enhanced. This leads to, first, the suppressed formation of the high modulus α″ phase and ω phase, which results in the decrease in apparent overall elastic modulus. Second, the dominant mode of deformation shifts from martensite dislocation slip (0Zr) to martensitic variant reorientation (3Zr), then to stress-induced martensite transform (SIMT, 9Zr), and finally to a combination of SIMT and deformation twinning (12Zr). Such shifting effectively increases the alloy’s tensile plasticity. Among the series, the Ti-25Nb-2Mo-12Zr alloy exhibited the lowest elastic modulus of 56.3 GPa, together with the highest elongation to failure of 48.2%, demonstrating that the alloy possesses considerable potential for biomedical applications. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys (2nd Edition))
Show Figures

Figure 1

13 pages, 2840 KB  
Article
Effect of Fe/Ni Microalloying on Interface Regulation of SiC/Al Composites: Molecular Dynamics Simulation and Experiments
by Tianpeng Song, Xiaoshuang Du, Tao Xia, Yong Liu, Jingchuan Zhu and Xuexi Zhang
Materials 2026, 19(2), 283; https://doi.org/10.3390/ma19020283 - 9 Jan 2026
Viewed by 217
Abstract
SiC/Al matrix composites are prone to forming brittle Al4C3 phase via interfacial reactions during fabrication, which severely limits their mechanical properties and engineering applications. Microalloying is an effective method to inhibit this brittle phase, yet the interfacial mechanism of alloying [...] Read more.
SiC/Al matrix composites are prone to forming brittle Al4C3 phase via interfacial reactions during fabrication, which severely limits their mechanical properties and engineering applications. Microalloying is an effective method to inhibit this brittle phase, yet the interfacial mechanism of alloying elements at the atomic scale remains unclear. Centered on molecular dynamics simulation combined with experimental verification, this study systematically investigates the laws of Fe and Ni microalloying on the interface regulation and mechanical property optimization of SiC/Al composites. Simulation results show that Fe and Ni atoms tend to segregate at the SiC/Al interface, which can suppress interfacial reactions, promote dislocation nucleation and proliferation, induce new dislocation types, and achieve the synergistic improvement of strength and ductility—with Ni exhibiting a more prominent strengthening effect. Composites prepared by the pressure infiltration-hot extrusion process show no Al4C3 phase in phase detection. Mechanical property tests confirm that Fe and Ni microalloying can effectively enhance the comprehensive performance of the materials, among which Ni increases the strength–ductility product by 54%. This study clarifies the interfacial regulation mechanism of Fe and Ni microalloying at the atomic scale, providing theoretical guidance and experimental support for the microalloying design of SiC/Al composites. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys (2nd Edition))
Show Figures

Graphical abstract

21 pages, 7314 KB  
Article
Improvement of Water-Cooling Performance for Combustion Chamber Through Optimization of Flow Channel Structure
by Daijian Wu, Guozheng Quan, Fanxin Meng, Si Li and Yanze Yu
Materials 2026, 19(1), 87; https://doi.org/10.3390/ma19010087 - 25 Dec 2025
Viewed by 294
Abstract
A complex operating environment poses significant challenges to the design of ramjet combustion chambers as high-enthalpy wind tunnels and their associated high-temperature, high-pressure combustion chambers continue to advance. This study developed a thermal–fluid–structure coupling finite element (FE) model based on the computational fluid [...] Read more.
A complex operating environment poses significant challenges to the design of ramjet combustion chambers as high-enthalpy wind tunnels and their associated high-temperature, high-pressure combustion chambers continue to advance. This study developed a thermal–fluid–structure coupling finite element (FE) model based on the computational fluid dynamics (CFD) numerical simulation method to simulate the service conditions of combustion chambers under varying structures. Subsequently, FE simulation results were used to study the influences of combustion chamber structure on fluid flow characteristics, variation in cooling water pressure, temperature and stress of a combustion chamber wall. The results showed that after cooling water entered the chamber as a stable jet, it impacted the wall surface and formed a bidirectional vortex flow, which then entered the cooling water channels. Modifying the slope of a cooling water channel can effectively reduce pressure within the combustion chamber. It is noteworthy that the inlet equivalent stress of a combustion chamber decreases with an increasing slope, whereas outlet equivalent stress increases correspondingly. Finally, through comprehensive analysis, the optimal slope of a cooling water channel was determined to be 0.3°. This work provides essential theoretical insights for optimizing the design of combustion chambers. Full article
(This article belongs to the Special Issue Research on Performance Improvement of Advanced Alloys (2nd Edition))
Show Figures

Figure 1

Back to TopTop