Improvement of Water-Cooling Performance for Combustion Chamber Through Optimization of Flow Channel Structure
Abstract
1. Introduction
2. Simulation and Experimental Methods
2.1. Development of FE Model
2.2. CFD Numerical Simulation Method
2.2.1. Boundary Conditions and Governing Equations
2.2.2. Selection of Turbulence Models
2.3. Coupling Mechanism of Thermal–Fluid–Structure Model
3. Results and Discussion
3.1. Analysis of Combustion Chamber Service Conditions
3.1.1. Flow Characteristics of Water in the Cooling Flow Structure
3.1.2. Pressure and Temperature Characteristics of Flow Channel Structure
3.2. Design and Optimization of Combustion Chamber Structure Based on Service Conditions
3.2.1. Design of Combustion Chamber Structure Based on Temperature Fields
3.2.2. Optimization and Analysis of the Internal Flow Channel Structure of Cooling Water
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shang, J.J.S.; Yan, H. High-Enthalpy Hypersonic Flows. Adv. Aerodyn. 2020, 2, 373–411. [Google Scholar] [CrossRef]
- Wang, Y.P.; Jiang, Z.L. Theories and Methods for Designing Hypersonic High-Enthalpy Flow Nozzles. Chin. J. Aeronaut. 2022, 35, 318–339. [Google Scholar] [CrossRef]
- Hannemann, K.; Martinez Schramm, J.; Wagner, A.; Friedl, D.; Camillo, G.P. The High Enthalpy Shock Tunnel Göttingen of the German Aerospace Center (DLR). J. Large-Scale Res. Facil. 2018, 4, A133. [Google Scholar] [CrossRef]
- Esposito, A.; Lappa, M.; Allouis, C. A Combustion-Driven Facility for Hypersonic Sustained Flight Simulation. Aerotec. Missili Spaz. 2024, 103, 271–287. [Google Scholar] [CrossRef]
- Jiang, Z.L.; Hu, Z.M.; Wang, Y.P.; Han, G.L. Advances in Critical Technologies for Hypersonic and High-Enthalpy Wind Tunnels. Chin. J. Aeronaut. 2020, 33, 3027–3038. [Google Scholar] [CrossRef]
- Shumskii, V.V.; Yaroslavtsev, M.I. Safe Starting of the Pressure Multiplier of the Hotshot Wind Tunnel. AIP Conf. Proc. 2018, 2027, 030089. [Google Scholar] [CrossRef]
- Maslov, A.A.; Shumsky, V.V.; Yaroslavtsev, M.I. High-enthalpy hot-shot wind tunnel with combined heating and stabilization of parameters. Thermophys. Aeromech. 2013, 20, 527–538. [Google Scholar] [CrossRef]
- Jing, T.T.; He, G.Q.; Li, W.Q.; Qin, F.; Wei, X.G.; Liu, Y.; Hou, Z.Y. Flow and Thermal Analyses of Regenerative Cooling in Non-Uniform Channels for Combustion Chamber. Appl. Therm. Eng. 2017, 119, 89–97. [Google Scholar] [CrossRef]
- Luo, S.B.; Xu, D.Q.; Song, J.W.; Liu, J. A Review of Regenerative Cooling Technologies for Scramjets. Appl. Therm. Eng. 2021, 190, 116754. [Google Scholar] [CrossRef]
- Shamim, J.A.; Paul, S.; Hsu, W.L.; Kitaoka, K.; Daiguji, H. Theoretical Analysis of Transient Heat and Mass Transfer during Regeneration in Multilayer Fixed-Bed Binder-Free Desiccant Dehumidifier: Model Validation and Parametric Study. Int. J. Heat. Mass. Tran. 2019, 134, 1024–1040. [Google Scholar] [CrossRef]
- Guo, Y.C.; Bao, Y.D.; Jiang, B.Y.; Lu, F.F. Flow Channel Optimization and Performance Analysis of Forced Air-Cooling Thermal Management for Lithium-Ion Battery Energy Storage Modules. Sae. Int. J. Mater. Manu. 2025, 18, 379–391. [Google Scholar] [CrossRef]
- Pezk, M.G.; Foroozesh, J. Determination of Mass Transfer Parameters and Swelling Factor of CO2-Oil Systems at High Pressures. Int. J. Heat. Mass. Tran. 2018, 126, 380–390. [Google Scholar]
- Wu, H.T.; Huang, Z.H.; Wang, W.Z.; Jin, H. Numerical Simulation of the Optimal Synergy Field in a Simple Reactor by Applying the Field Synergy Principle to Enhance Convective Heat and Mass Transfer. Appl. Therm. Eng. 2025, 279, 127753. [Google Scholar] [CrossRef]
- Jin, P.; Lv, J.J.; Peng, Q.B.; Zhang, H.L.; Cai, G.B.; Zhou, J.P. An Analytical Formula Evolved from Thermal-Structural Coupling Model for Life Prediction and Structural Design of Reusable Thrust Chambers. Appl. Therm. Eng. 2024, 251, 123568. [Google Scholar] [CrossRef]
- Jeon, T.J.; Park, T.S. Thermal Recycling Analysis in Regenerative Cooling Channels Based on Liquid Rocket Engine Cycles. Appl. Therm. Eng. 2024, 256, 124095. [Google Scholar] [CrossRef]
- Caccavale, P.; Mele, B.; Brandizzi, M.; Ruocco, G. Fully Coupled Fluid-Structure Interaction with Heat Transfer Effects in an Adaptive NACA Airfoil. Fluids 2023, 8, 39. [Google Scholar] [CrossRef]
- Liu, R.Z.; Li, H.W.; You, R.Q.; Huang, Y.; Tao, Z. Conjugate Heat Transfer Study of Various Cooling Structures and Sensitivity Analysis of Overall Cooling Effectiveness. Sci. Rep. 2022, 12, 19271. [Google Scholar] [CrossRef]
- Bryk, M.; Lemanski, M.; Madejski, P. Thermal-Fluid-Structure Interaction Analysis of the Impact of Structural Modifications on the Stress and Flow Parameters in a Nozzle Box Made of StE460 Steel. Materials 2024, 17, 6287. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Chen, W.D.; Ji, L.L.; Gao, T.S.; Lu, S.Z. Trajectory-Based Flow-Thermal-Structural Coupling Analysis for Hypersonic Vehicles. Phys. Fluids 2025, 37, 035192. [Google Scholar] [CrossRef]
- King, W.E.; Anderson, A.T.; Ferencz, R.M.; Hodge, N.E.; Kamath, C.; Khairallah, S.A.; Rubenchik, A.M. Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl. Phys. Rev. 2015, 2, 041304. [Google Scholar] [CrossRef]
- Dong, X.K.; Jiang, X.J.; Li, P.; Mi, Y.; Liu, Q. Three-Dimensional Fluid-Thermal-Mechanical Coupling Numerical Modeling of Elastocaloric Cooler for Electronic Chip. Appl. Therm. Eng. 2024, 248, 123199. [Google Scholar] [CrossRef]
- Pizzarelli, M.; Nasuti, F.; Paciorri, R.; Onofri, M. Numerical Analysis of Three-Dimensional Flow of Supercritical Fluid in Cooling Channels. J. Thermophys. Aerosp. Res. Cent. 2012, 47, 2534–2543. [Google Scholar] [CrossRef]
- Feppon, F.; Allaire, G.; Bordeu, F.; Cortial, J.; Dapogny, C. Shape Optimization of a Coupled Thermal Fluid–Structure Problem in a Level Set Mesh Evolution Framework. Sema J. 2019, 76, 413–458. [Google Scholar] [CrossRef]
- Liu, D.; Sun, B.; Song, J.W.; Wang, T.P.; Ma, X.Y. Effects of Thermal and Pressure Loads on Structural Deformation of Liquid Oxygen/Methane Engine Combustion Chamber. J. Therm. Sci. Technol. 2020, 15, JTST0022. [Google Scholar] [CrossRef]
- Nelson, F. Introduction of computational fluid dynamics in a thermal-fluids laboratory. J. Comput. Educ. 2017, 8. [Google Scholar]
- Quan, G.; Deng, Q.; Zhao, Y.F.; Quan, M.G.; Wu, D.J. Achievement of a Parameter Window for the Selective Laser Melting Formation of a GH3625 Alloy. Materials 2024, 17, 2333. [Google Scholar] [CrossRef]
- Umar, E.; Tandian, N.P.; Syuryavin, A.C.; Ramadhan, A.L.; Prayitno, J.H. CFD Analysis of Convective Heat Transfer in a Vertical Square Sub-Channel for Laminar Flow Regime. Fluids 2022, 7, 207. [Google Scholar] [CrossRef]
- Parsa, V.; Santiago, A.; Laim, L. Computational Fluid Dynamics of Compartment Fires: A Review of Methods and Applications. Appl. Sci. 2025, 15, 2342. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Zhang, K.; Li, W.H.; Chen, Q.; Zheng, N.B. Investigations of the Turbulent Thermal-Hydraulic Performance in Circular Heat Exchanger Tubes with Multiple Rectangular Winglet Vortex Generators. Appl. Therm. Eng. 2020, 168, 114838. [Google Scholar] [CrossRef]
- Gnielinski, V. New equations for heat and mass-transfer in turbulent pipe and channel flow. Int. Chem. Eng. 1976, 16, 359–368. [Google Scholar]
- Maksin, P.L.; Petukhov, B.S.; Polyakov, A.F. Calculation of turbulent momentum and heat-transfer in pipe-flow of a gas with variable physical-properties. High Temp. 1977, 15, 861–868. [Google Scholar]
- Menter, F.R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. [Google Scholar] [CrossRef]
- Winterton, R.H.S. Where did the Dittus and Boelter equation come from? Int. J. Heat Mass Transf. 1998, 41, 809–810. [Google Scholar] [CrossRef]
- Mateusz, M.; Dawid, T.; Jan, T.; Katarzyna, W. Air-Side Nusselt Numbers and Friction Factor’s Individual Correlations of Finned Heat Exchangers. Energies 2022, 15, 15. [Google Scholar]
- Hao, W.G.; Zhang, H.; Liu, S.N.; Lai, Y.H. Design and Prediction Method of Dual Working Medium Solar Energy Drying System. Appl. Therm. Eng. 2021, 195, 117153. [Google Scholar] [CrossRef]













| Temperature (K) | Specific Heat (J·kg−1·K−1) | Thermal Conductivity (W·m−1·K−1) | Thermal Expansion (10−6 K−1) | Poisson’s Ratio | Young’s Modulus (GPa) | Yield Strength (MPa) |
|---|---|---|---|---|---|---|
| 293.15 | 409.76 | 9.78 | 12.6 | 0.278 | 207.55 | 496.00 |
| 373.15 | 428.83 | 10.91 | 12.82 | 0.28 | 203.71 | 461.79 |
| 473.15 | 454.95 | 12.44 | 13.09 | 0.286 | 198.12 | 430.26 |
| 573.15 | 477.43 | 13.87 | 13.27 | 0.289 | 192.59 | 412.71 |
| 673.15 | 503.7 | 15.31 | 13.6 | 0.294 | 187.01 | 408.49 |
| 773.15 | 527.44 | 16.88 | 13.9 | 0.302 | 180.96 | 406.03 |
| 873.15 | 552.2 | 18.34 | 14.45 | 0.314 | 173.96 | 398.30 |
| 973.15 | 576.49 | 19.83 | 15.03 | 0.313 | 165.84 | 387.49 |
| 1073.15 | 600.81 | 21.52 | 15.48 | 0.316 | 155.88 | 330.55 |
| Parameter | β* | γ | β | σk | σω | a1 |
|---|---|---|---|---|---|---|
| φ1 | 0.09 | 0.556 | 0.075 | 0.85 | 0.05 | 0.31 |
| φ2 | 0.09 | 0.440 | 0.083 | 1.00 | 0.86 | 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Wu, D.; Quan, G.; Meng, F.; Li, S.; Yu, Y. Improvement of Water-Cooling Performance for Combustion Chamber Through Optimization of Flow Channel Structure. Materials 2026, 19, 87. https://doi.org/10.3390/ma19010087
Wu D, Quan G, Meng F, Li S, Yu Y. Improvement of Water-Cooling Performance for Combustion Chamber Through Optimization of Flow Channel Structure. Materials. 2026; 19(1):87. https://doi.org/10.3390/ma19010087
Chicago/Turabian StyleWu, Daijian, Guozheng Quan, Fanxin Meng, Si Li, and Yanze Yu. 2026. "Improvement of Water-Cooling Performance for Combustion Chamber Through Optimization of Flow Channel Structure" Materials 19, no. 1: 87. https://doi.org/10.3390/ma19010087
APA StyleWu, D., Quan, G., Meng, F., Li, S., & Yu, Y. (2026). Improvement of Water-Cooling Performance for Combustion Chamber Through Optimization of Flow Channel Structure. Materials, 19(1), 87. https://doi.org/10.3390/ma19010087

