materials-logo

Journal Browser

Journal Browser

Recycling and Electrode Materials of Lithium Batteries

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Energy Materials".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 1029

Special Issue Editor


E-Mail Website1 Website2
Guest Editor
1.BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, Leioa, Spain
2. IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
Interests: functional materials (ferroelectric, pyroelectric, piezoelectric materials); electrochemistry (Li battery, solid electrolyte, corrosion); surface engineering

Special Issue Information

Dear Colleagues,

This Special Issue will explore advancements in the recycling of electrode materials from lithium batteries, addressing challenges and presenting innovative solutions. It seeks to gather contributions that elucidate various aspects of material recovery, recycling processes, and the environmental and economic impacts of these technologies.

With the proliferation of lithium batteries, the efficient recycling of their electrode materials is imperative for sustainability. We aim to advance knowledge of and technologies involved in the recycling of lithium battery electrode materials to mitigate environmental impacts and promote resource efficiency.

Over the years, research has focused on developing cost-effective and environmentally friendly methods for recovering valuable materials from spent lithium batteries. Recent studies have made significant strides in enhancing recovery rates and improving the purity of recycled materials, contributing to a more sustainable battery lifecycle.

This Special Issue welcomes original research articles, reviews, and communications that address novel methodologies, material characterization, life cycle assessments, and techno-economic analyses related to the recycling of lithium battery electrode materials.

We invite submissions that explore innovative recycling technologies, strategies to enhance material recovery rates, environmental assessments, economic analyses, and policy implications related to the field of lithium battery recycling.

Researchers and practitioners are encouraged to contribute their insights to foster a deeper understanding of this critical area and advance sustainable practices with regard to battery technology.

Prof. Dr. Qi Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • recycling
  • lithium batteries
  • electrode materials
  • sustainability
  • circular economy
  • material recovery
  • environmental impact
  • secondary materials
  • energy storage
  • green technology

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 3228 KB  
Communication
Green and Efficient Lithium Extraction from Spent NCM Batteries via Electromagnetic Radiation
by Ling Tong, Gui-Rong Zhang, Da-Shuai Li, Xing-Yu Huang, Yuan-Long Liu and Yan-Qing Cheng
Materials 2025, 18(17), 3975; https://doi.org/10.3390/ma18173975 - 25 Aug 2025
Abstract
The conventional recycling of spent lithium-ion batteries (LIBs) is hindered by high energy consumption and severe environmental pollution. In this study, a novel method utilizing high-frequency electromagnetic radiation was proposed to process the black mass derived from spent NCM-LIBs, significantly reducing both energy [...] Read more.
The conventional recycling of spent lithium-ion batteries (LIBs) is hindered by high energy consumption and severe environmental pollution. In this study, a novel method utilizing high-frequency electromagnetic radiation was proposed to process the black mass derived from spent NCM-LIBs, significantly reducing both energy consumption and chemical reagent usage. Conductive carbon black was introduced as an electromagnetic-wave-absorbing additive to improve the electromagnetic energy into thermal energy conversion efficiency during electromagnetic radiation. As a result, the decomposition and reduction of NCM materials can be completed within just 10 min at a microwave power of 500 W. Following electromagnetic irradiation, lithium was efficiently extracted via simple water leaching, achieving an extraction efficiency of 88.24%. Furthermore, a microwave heating device based on traveling-wave propagation was developed. Unlike conventional small-scale microwave systems that employ resonant cavities, this design enables improved heating uniformity, higher efficiency, and greater scalability for industrial microwave-assisted chemical processes. Full article
(This article belongs to the Special Issue Recycling and Electrode Materials of Lithium Batteries)
Show Figures

Graphical abstract

16 pages, 738 KB  
Article
Modeling, Simulation, and Techno-Economic Assessment of a Spent Li-Ion Battery Recycling Plant
by Árpád Imre-Lucaci, Florica Imre-Lucaci and Szabolcs Fogarasi
Materials 2025, 18(15), 3715; https://doi.org/10.3390/ma18153715 - 7 Aug 2025
Viewed by 432
Abstract
The literature clearly indicates that both academia and industry are strongly committed to developing comprehensive processes for spent Li-ion battery (LIB) recycling. In this regard, the current study presents an original contribution by providing a quantitative assessment of a large-scale recycling plant designed [...] Read more.
The literature clearly indicates that both academia and industry are strongly committed to developing comprehensive processes for spent Li-ion battery (LIB) recycling. In this regard, the current study presents an original contribution by providing a quantitative assessment of a large-scale recycling plant designed for the treatment of completely spent LIBs. In addition to a concept of the basic process, this assessment also considers a case study of a thermal integration and CO2 capture subsystem. Process flow modeling software was used to evaluate the contribution of all process steps and equipment to overall energy consumption and to mass balance the data required for the technical assessment of the large-scale recycling plant. To underline the advantages and identify the optimal novel process concept, several key performance indicators were determined, such as recovery efficiency, specific energy/material consumption, and specific CO2 emissions. In addition, the economic potential of the recycling plants was evaluated for the defined case studies based on capital and O&M costs. The results indicate that, even with CO2 capture applied, the thermally integrated process with the combustion of hydrogen produced in the recycling plant remains the most promising large-scale configuration for spent LIB recycling. Full article
(This article belongs to the Special Issue Recycling and Electrode Materials of Lithium Batteries)
Show Figures

Figure 1

Back to TopTop