materials-logo

Journal Browser

Journal Browser

Surface Engineering and Coating Technologies for Corrosion and Wear Resistance

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Thin Films and Interfaces".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 1702

Special Issue Editor


E-Mail Website
Guest Editor
Optoelectronics Research Line, Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova, Italy
Interests: 2D materials; perovskites; surface engineering; DFT simulation; catalyst; CVD; PVD; ALD

Special Issue Information

Dear Colleagues,

Surface engineering and coating technologies play a crucial role in enhancing the corrosion and wear resistance of materials used in various industrial applications. These technologies involve modifying the surface characteristics of materials to improve their durability and performance in harsh environments. Techniques such as thermal spraying, electroplating, and chemical vapor deposition are commonly employed to apply protective coatings that create a barrier against corrosive agents and abrasive forces.

The selection of appropriate materials for coatings is vital, as they must possess high hardness, adhesion strength, and resistance to thermal and chemical degradation. Advanced coatings, including nanostructured and composite materials, have emerged, offering superior properties compared to traditional coatings. Furthermore, surface engineering techniques like shot peening and surface hardening can enhance the mechanical properties of the substrate, thereby increasing its lifespan.

Recent advancements in surface engineering also focus on environmentally friendly processes and materials, addressing growing concerns over sustainability. Overall, the integration of surface engineering and coating technologies is essential for improving the longevity and reliability of components in industries such as aerospace, automotive, and oil and gas, ultimately leading to reduced maintenance costs and improved safety.

Dr. Mehrdad Faraji
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface engineering
  • coating
  • corrosion
  • wear
  • thermal spraying
  • chemical vapor deposition

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 7158 KB  
Article
Fe-Cr-Mo-B-Si-C Metamorphic Alloy Coating with Excellent Wear Resistance Fabricated via High-Velocity Oxygen Fuel Thermal Spray Process
by Yu-Jin Hwang, Yong-Hoon Cho, Gi-Su Ham, Choongnyun Paul Kim and Kee-Ahn Lee
Materials 2025, 18(18), 4241; https://doi.org/10.3390/ma18184241 - 10 Sep 2025
Viewed by 328
Abstract
A cost-effective Fe-Cr-Mo-B-Si-C metamorphic alloy (HXA5) was newly designed and fabricated as coating material using the high-velocity oxygen fuel (HVOF) thermal spray process, and its microstructure and dry wear resistance were investigated in comparison with a conventional HVOF WC-12Co coating. The HXA5 coating [...] Read more.
A cost-effective Fe-Cr-Mo-B-Si-C metamorphic alloy (HXA5) was newly designed and fabricated as coating material using the high-velocity oxygen fuel (HVOF) thermal spray process, and its microstructure and dry wear resistance were investigated in comparison with a conventional HVOF WC-12Co coating. The HXA5 coating material consisted of a splat area and un-melted powder area. The splat area contained metallic glass, (Cr,Fe)2B, Cr2B, and minor Fe-based BCC phases, and the un-melted powder area was composed of Fe-based BCC, (Cr,Fe)2B, and Cr2B phases. Room-temperature wear tests revealed that HVOF HXA5 coating material exhibited wear resistance comparable to HVOF WC-12Co coating over ~8.4 km sliding and even superior performance at high-stress wear conditions. This superior wear behavior of HXA5 coating material was attributed to the minimal hardness difference between the metallic glass and boride, the plasticity of the metallic glass, and the formation of a lubricating tribofilm. The wear mechanisms and the influence of alloying elements on glass-forming ability were also discussed. Full article
Show Figures

Figure 1

16 pages, 6875 KB  
Article
Scalable Engineering of Superhydrophobic Copper Surfaces with Enhanced Corrosion Resistance by Combined Nanostructuring and Chemical Vapor Deposition
by N. Rahul, Beomguk Park, Sanjaya Kumar Pradhan, Ho-Eon Sung, Inn-Hyup Jeong, Yong-Sup Yun and Min-Suk Oh
Materials 2025, 18(17), 3981; https://doi.org/10.3390/ma18173981 - 25 Aug 2025
Viewed by 835
Abstract
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process [...] Read more.
The vulnerability of copper to corrosion in humid and saline environments remains a critical challenge for its long-term use. In this work, we present a streamlined and scalable approach for fabricating superhydrophobic, corrosion-resistant copper surfaces by integrating a simple wet chemical oxidation process with atmospheric pressure chemical vapor deposition (APCVD) of a perfluorinated silane. The hierarchical CuO nanostructures formed via alkaline oxidation serve as a robust layer, while subsequent silane functionalization imparts low surface energy, resulting in surfaces with water contact angles exceeding 170° and minimal contact angle hysteresis. Comprehensive surface characterization by SEM and roughness analysis confirmed the preservation of hierarchical morphology after coating. Wettability studies reveal a transition from hydrophilic to superhydrophobic behavior, with the Cassie–Baxter regime achieved on nanostructured and silane-functionalized samples, leading to enhanced droplet mobility and self-cleaning effect. Salt spray tests demonstrate that the superhydrophobic surfaces exhibit a corrosion rate reduction of 85.7% (from 2.51 mm/year for bare copper to 0.36 mm/year for the treated surface), indicating a seven-fold improvement in corrosion resistance compared to bare copper. This methodology offers a practical, reproducible route to multifunctional copper surfaces, advancing their potential for use in anti-fouling, self-cleaning, and long-term protective applications. Full article
Show Figures

Figure 1

Back to TopTop