materials-logo

Journal Browser

Journal Browser

Advances in High Cycle Fatigue and Fracture Failure of Metallic Materials and Components

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Mechanics of Materials".

Deadline for manuscript submissions: closed (20 March 2025) | Viewed by 7524

Special Issue Editors


E-Mail Website
Guest Editor
1. Department of Mechanical Engineering, National University of Mar del Plata, Mar del Plata, Argentina
2. Research Institute for Materials Science and Technology (INTEMA), National Scientific and Technical Research Council (CONICET), Mar del Plata, Argentina
Interests: experimental mechanics; fracture mechanics; damage mechanics; high cycle fatigue; fatigue design, mechanical components integrity; failure analysis

E-Mail Website
Guest Editor
Faculty of Mechanical Engineering, University of Maribor, SI-2000 Maribor, Slovenia
Interests: welded joints; structural integrity assessment; fracture mechanics; finite element analysis, multi-scale modeling, fatigue
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Most instances of structural failures in engineering can be attributed to High Cycle Fatigue phenomena. Thus, a profound understanding of the fatigue and fracture behaviors of the materials and structural elements is indispensable for enhancing their longevity and safety.

Innovative materials and processes, such as additively manufactured materials, have spurred the use of novel methodologies to analyze intricate configurations. Consequently, these advancements necessitate specialized approaches to simulate the fracture responses, ensuring compliance with stringent safety requirements.

This Special Issue of Materials is dedicated to the scrutiny of High Cycle Fatigue and fracture behavior in engineering materials and components. The emphasis is placed on investigating estimations and providing a platform for presenting the recent breakthroughs in this domain. The publication serves as a conduit for disseminating knowledge and fostering discussions on the evolving landscape of fatigue and fracture analysis, contributing to the continual improvement of structural durability and safety standards.

This Special Issue intends to cover several topics, which include, but are not limited to:

  • Fracture mechanics approaches for fatigue assessment of materials and components;
  • Defect assessment and high cycle fatigue resistance;
  • Fatigue and fracture of metallic alloys fabricated through additive manufacturing;
  • Novel fatigue design criteria of mechanical components;
  • Experimental methods in fracture mechanics.

Prof. Dr. Mirco Daniel Chapetti
Prof. Dr. Nenad Gubeljak
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fracture mechanics
  • high cycle fatigue
  • short or small crack propagation
  • defect assessment
  • damage mechanics
  • additive manufacturing materials
  • metallic components

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 5161 KiB  
Article
Anomalies in Long-Crack Propagation at Low ΔK in Some Engineering Alloys
by Daniel Kujawski and Asuri K. Vasudevan
Materials 2024, 17(24), 6093; https://doi.org/10.3390/ma17246093 - 13 Dec 2024
Viewed by 621
Abstract
In this article, we discuss an unusual pattern in long-crack behavior at low stress intensity factor ranges ΔK (below ΔKth), characterized by an initial dip, followed by a plateau, and then an acceleration in fatigue crack growth (FCG) rate. This unanticipated [...] Read more.
In this article, we discuss an unusual pattern in long-crack behavior at low stress intensity factor ranges ΔK (below ΔKth), characterized by an initial dip, followed by a plateau, and then an acceleration in fatigue crack growth (FCG) rate. This unanticipated FCG behavior was first observed experimentally in the IMI 834 alloy and reported by Marci in 1996. Such an anomaly is only reported from experimental observation but cannot be understood or explained using the plasticity, roughness, or oxide-induced crack closure assumptions. It also has not been fully explained through either metallurgical analysis or failure mode investigation. The established application of fracture mechanics to the FCG rate (da/dN) assumes that the FCG rate decreases with decreasing ΔK towards the threshold of ΔKth with (da/dN) 10−7 mm/cycle. Yet, some materials exhibit a lack of ΔK threshold dependence for long cracks when tested using constant-Kmax or constant-R-ratio testing. An understanding of this anomaly and the related physics poses a scientific challenge. It is also relevant to predict the safe service life of structures subjected to high-frequency and low-amplitude vibrating loads. Here, we provide our interpretation and discuss the significant implications of this phenomenon in the context of damage-tolerant design. Full article
Show Figures

Figure 1

25 pages, 21771 KiB  
Article
A Master Curve for Fatigue Design of Notched Nodular Cast Iron Components Based on the Local Averaged Strain Energy Density
by Jacopo Pelizzari, Alberto Campagnolo, Carlo Dengo and Giovanni Meneghetti
Materials 2024, 17(19), 4807; https://doi.org/10.3390/ma17194807 - 29 Sep 2024
Viewed by 1176
Abstract
The industry of off-highway vehicles is one of the fields of major application of nodular cast irons, which guarantee the manufacture of complex geometries and ensure good mechanical properties. The present investigation deals with the fatigue design of off-highway axles made of EN-GJS-500-7. [...] Read more.
The industry of off-highway vehicles is one of the fields of major application of nodular cast irons, which guarantee the manufacture of complex geometries and ensure good mechanical properties. The present investigation deals with the fatigue design of off-highway axles made of EN-GJS-500-7. Typically, off-highway axles are weakened by stress risers which must be assessed against fatigue. In this investigation, laboratory specimens have been extracted from an off-highway axle to take into account the manufacturing process effects. Different specimens’ geometries have been prepared, including plain, bluntly notched and sharply V-notched specimens, and constant amplitude, load-controlled axial fatigue tests were conducted using two nominal load ratios, namely push–pull and pulsating tension loading. As a result, both the notch and the mean stress effects on the fatigue behaviour of EN-GJS-500-7 have been experimentally investigated for the first time. A well-known local approach, which takes the strain energy density (SED) averaged over a properly defined structural volume as a fatigue damage parameter, has been applied both in the linear elastic and elastic plastic formulations. Since the SED correlated the geometrical notch effects of the specimens as well as the mean stress effects, a master curve based on the averaged SED has been defined for the first time, to the best of the authors’ knowledge, for the fatigue design of off-highway axles made of EN-GJS-500-7. Full article
Show Figures

Graphical abstract

25 pages, 6280 KiB  
Article
Non-Propagating Cracks at the Fatigue Limit of Notches: An Analysis of Notch Sensitivity and Size Effect
by Mirco Daniel Chapetti
Materials 2024, 17(18), 4632; https://doi.org/10.3390/ma17184632 - 21 Sep 2024
Viewed by 949
Abstract
The issues of the high-cycle fatigue resistance of notches and the role of non-propagating short cracks in defining the fatigue notch sensitivity and fatigue limit of the configuration are addressed. A fracture mechanics approach is employed to determine the threshold configuration that defines [...] Read more.
The issues of the high-cycle fatigue resistance of notches and the role of non-propagating short cracks in defining the fatigue notch sensitivity and fatigue limit of the configuration are addressed. A fracture mechanics approach is employed to determine the threshold configuration that defines the associated fatigue limit. The influence of notch sharpness, notch size, intrinsic fatigue limit, microstructural dimensions, and the threshold for crack propagation is examined. A simple expression is proposed to estimate the maximum fatigue notch factor, kfMax, which incorporates the influence of these non-propagating cracks. The fatigue limits for both blunt and sharp elliptical notches are analyzed and predicted based on experimental results reported in the literature. Additionally, shallow notches or small defects are analyzed, where it is found that the same hypothesis may not be applicable. Full article
Show Figures

Figure 1

18 pages, 5125 KiB  
Article
Short Fatigue-Crack Growth from Crack-like Defects under Completely Reversed Loading Predicted Based on Cyclic R-Curve
by Keisuke Tanaka and Yoshiaki Akiniwa
Materials 2024, 17(18), 4484; https://doi.org/10.3390/ma17184484 - 12 Sep 2024
Cited by 1 | Viewed by 1018
Abstract
Understanding short fatigue-crack propagation behavior is inevitable in the defect-tolerant design of structures. Short cracks propagate differently from long cracks, and the amount of crack closure plays a key role in the propagation behavior of short cracks. In the present paper, the buildup [...] Read more.
Understanding short fatigue-crack propagation behavior is inevitable in the defect-tolerant design of structures. Short cracks propagate differently from long cracks, and the amount of crack closure plays a key role in the propagation behavior of short cracks. In the present paper, the buildup of fatigue-crack closure due to plasticity with crack extension from crack-like defects is simulated with a modified strip yield model, which leaves plastic stretch in the wake of the advancing crack. Crack-like defects are assumed to be closure-free and do not close even under compression. The effect of the size of crack-like defects on the growth and arrest of short cracks was systematically investigated and the cyclic R-curve derived. The cyclic R-curve determined under constant amplitude loading of multiple specimens is confirmed to be independent of the initial defect length. Load-shedding and ΔK-constant loading tests are employed to extend the cyclic R-curve beyond the fatigue limit determined under constant amplitude loading. The initiation stage of cracks is taken into account in R-curves when applied to smooth specimens. Full article
Show Figures

Figure 1

15 pages, 6028 KiB  
Article
Tensile and High Cycle Fatigue Performance at Room and Elevated Temperatures of Laser Powder Bed Fusion Manufactured Hastelloy X
by Zehui Jiao, Li Zhang, Shuai Huang, Jiaming Zhang, Xudong Li, Yuhuai He and Shengchuan Wu
Materials 2024, 17(10), 2248; https://doi.org/10.3390/ma17102248 - 10 May 2024
Cited by 3 | Viewed by 1571
Abstract
The application potential of additive manufacturing nickel-based superalloys in aeroengines and gas turbines is extensive, and evaluating their mechanical properties is crucial for promoting the engineering application in load-bearing components. In this study, Hastelloy X alloy was prepared using the laser powder bed [...] Read more.
The application potential of additive manufacturing nickel-based superalloys in aeroengines and gas turbines is extensive, and evaluating their mechanical properties is crucial for promoting the engineering application in load-bearing components. In this study, Hastelloy X alloy was prepared using the laser powder bed fusion process combined with solution heat treatment. The tensile and high cycle fatigue properties were experimentally investigated at room temperature as well as two typical elevated temperatures, 650 °C and 815 °C. It was found that, during elevated-temperature tensile deformation, the alloy exhibits significant serrated flow behavior, primarily observed during the initial stage of plastic deformation at 650 °C but occurring throughout the entire plastic deformation process at 815 °C. Notably, when deformation is small, sawtooth fluctuations are significantly higher at 815 °C compared to 650 °C. Irregular subsurface lack of fusion defects serve as primary sources for fatigue crack initiation in this alloy including both single-source and multi-source initiation mechanisms; moreover, oxidation on fracture surfaces is more prone to occur at elevated temperatures, particularly at 815 °C. Full article
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 13729 KiB  
Review
Numerical Simulation of Fatigue Crack Growth and Fracture in Welded Joints Using XFEM—A Review of Case Studies
by Aleksandar Sedmak, Aleksandar Grbović, Nenad Gubeljak, Simon Sedmak and Nikola Budimir
Materials 2024, 17(22), 5531; https://doi.org/10.3390/ma17225531 - 13 Nov 2024
Cited by 1 | Viewed by 1234
Abstract
Numerical simulation of fatigue crack growth in welded joints is not well represented in the literature, especially from the point of view of material heterogeneity in a welded joint. Thus, several case studies are presented here, including some focusing on fracture, presented by [...] Read more.
Numerical simulation of fatigue crack growth in welded joints is not well represented in the literature, especially from the point of view of material heterogeneity in a welded joint. Thus, several case studies are presented here, including some focusing on fracture, presented by two case studies of mismatched high-strength low-alloyed (HSLA) steel welded joints, with cracks in the heat affected zone (HAZ) or in weld metal (WM). For fatigue crack growth, the extended finite element method FEM (XFEM) was used, built in ABAQUS and ANSYS R19.2, as presented by four case studies, two of them without modelling different properties of the welded joint (WJ). In the first one, fatigue crack growth (FCG) in integral (welded) wing spar was simulated by XFEM to show that its path is partly along welded joints and provides a significantly longer fatigue life than riveted spars of the same geometry. In the second one, an integral skin-stringer panel, produced by means of laser beam welding (LBW), was analysed by XFEM in its usual form with stringers and additional welded clips. It was shown that the effect of the welded joint is not significant. In the remaining two papers, different zones in welded joints (base metal—BM, WM, and HAZ) were represented by different coefficients of the Paris law to simulate different resistances to FCG in the two cases; one welded joint was made of high-strength low-alloyed steel (P460NL1) and the other one of armour steel (Protac 500). Since neither ABAQUS nor ANSYS provide an option for defining different fatigue properties in different zones of the WJ, an innovative procedure was introduced and applied to simulate fatigue crack growth through different zones of the WJ and evaluate fatigue life more precisely than if the WJ is treated as a homogeneous material. Full article
Show Figures

Figure 1

Back to TopTop