materials-logo

Journal Browser

Journal Browser

Emerging Light-Emitting Materials and Devices

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Optical and Photonic Materials".

Deadline for manuscript submissions: 20 June 2026 | Viewed by 290

Special Issue Editor


E-Mail Website
Guest Editor
College of Nano Science & Technology, Soochow University, Suzhou, China
Interests: light-emitting materials and devices based on organic, quantum dots, and perovskites

Special Issue Information

Dear Colleagues,

This Special Issue aims to showcase cutting-edge research and recent advancements in light-emitting materials and devices, covering novel design strategies, fabrication techniques, and applications in optoelectronics. We welcome contributions on emerging materials such as perovskites, organic semiconductors, quantum dots, and hybrid systems, as well as innovative device architectures like flexible LEDs, next-generation displays, and biointegrated optoelectronic systems. Key topics include efficiency enhancement, stability improvement, scalable manufacturing, and novel functionalities (e.g., stretchability, self-healing, or energy recycling).

The scope of the Special Issue spans fundamental studies, computational modeling, and applied research, with a focus on translating material innovations into high-performance devices for displays, lighting, sensing, and communication technologies. We invite original research articles, reviews, and perspectives that address challenges in efficiency, cost, and sustainability, while exploring future directions for the field.

This Special Issue seeks to foster interdisciplinary collaboration among chemists, physicists, materials scientists, and engineers, providing a platform to share breakthroughs that could redefine the future of light-emitting technologies.

Dr. Dong-Ying Zhou
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • quantum dots
  • perovskite emitters
  • organic light-emitting diodes
  • phosphors and luminescent materials
  • flexible optoelectronics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 1617 KB  
Article
Hybrid Tandem White Light-Emitting Diodes Based on GaN and Organic Emitters
by Jin-Zhe Xu, Xiao-Zhao Zhu, Feng Zhai, Wei-Zhi Liu, Dong-Ying Zhou and Liang-Sheng Liao
Materials 2025, 18(24), 5684; https://doi.org/10.3390/ma18245684 - 18 Dec 2025
Viewed by 214
Abstract
Tandem white organic light-emitting diodes (OLEDs), formed by stacking red, green, and blue organic electroluminescent units, offer a promising route toward high-resolution microdisplays. However, their performance is constrained by the intrinsically short lifetime of blue OLED sub-units. Replacing the unstable blue OLED with [...] Read more.
Tandem white organic light-emitting diodes (OLEDs), formed by stacking red, green, and blue organic electroluminescent units, offer a promising route toward high-resolution microdisplays. However, their performance is constrained by the intrinsically short lifetime of blue OLED sub-units. Replacing the unstable blue OLED with a long-lived GaN-based LED could address this limitation, but practical hybridization remains difficult because of incompatible fabrication routes and significant current imbalance between the inorganic and organic units. Here, we demonstrate the first hybrid GaN–OLED tandem white LEDs enabled by an interface-engineered charge-generation unit (CGU). By introducing an ITO/HAT-CN/LiNH2-doped Bphen CGU, we simultaneously enhance the work function, strengthen the built-in electric field, and smooth the interfacial morphology. These synergistic effects promote efficient charge generation, yielding near-ideal voltage summation and well-balanced electron–hole injection. As a result, the hybrid tandem device shows a nearly twofold increase in current efficiency (from 28.1 to 58.6 cd A–1) and significantly reduced spectral shift under varying current densities. We further demonstrate the generality of this approach by integrating the GaN emission with yellow OLEDs to produce stable blue–yellow hybrid white emission. This work establishes an applicable strategy for integrating GaN-LEDs and OLEDs, opening a pathway toward efficient, stable, and compact white light engines for next-generation microdisplay technologies. Full article
(This article belongs to the Special Issue Emerging Light-Emitting Materials and Devices)
Show Figures

Graphical abstract

Back to TopTop