Smart Structures and Applications in Aerospace Engineering

A special issue of Machines (ISSN 2075-1702). This special issue belongs to the section "Machine Design and Theory".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 352

Special Issue Editors


E-Mail Website
Guest Editor
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Interests: morphing aircraft; smart structures; aircraft design; structural dynamics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Interests: smart materials and structures; shape-memory alloy actuators; piezoelectric actuators; functional devices for aerospace engineering; morphing aircrafts
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Smart structures have been the focus of research in the previous few decades, and they have the potential to improve the performance of various machines. Becoming “smart” means that the structures have the potential to change their properties adaptively according to their mission requirements. To achieve this objective, the structures can be tuned passively by their design and optimisation. Also, the structures can be controlled actively by the integration of actuators and sensors.

The rapid development of new materials, electronics, and design methods provided a strong technological push for smart structures in the field of aerospace engineering, aiming to improve the load-carrying, shape-changing, damage-detecting, and other capabilities of future aircrafts.

We are pleased to announce This Special Issue, ‘Smart Structures And Applications in Aerospace Engineering’, and kindly invite the submission of full research and review papers on the design and optimisation of smart structures that use theoretical, numerical, and experimental approaches in the field of aeronautics and aeronautics.

Prof. Dr. Chen Wang
Prof. Dr. Xing Shen
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Machines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • smart structures
  • adaptive structures
  • morphing structures
  • vibration and noise control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

25 pages, 10618 KB  
Article
Study of the Water Vapor Desublimation Effect on the Camber Morphing Wing Considering Cryogenic Environments
by Yu Zhang, Baobin Hou, Yuchen Li, Yuanjing Wang, Binbin Lv, Guojun Lai and Jingyuan Wang
Machines 2025, 13(9), 834; https://doi.org/10.3390/machines13090834 - 9 Sep 2025
Viewed by 136
Abstract
The variable camber morphing wing has the potential to achieve improved flight performance across different flight conditions by changing its geometry according to changing flight conditions. Evaluating the subtle aerodynamic benefits of variable camber technology necessitates wind tunnel testing under flight Reynolds number [...] Read more.
The variable camber morphing wing has the potential to achieve improved flight performance across different flight conditions by changing its geometry according to changing flight conditions. Evaluating the subtle aerodynamic benefits of variable camber technology necessitates wind tunnel testing under flight Reynolds number conditions. In high Reynolds number wind tunnels, the cryogenic environment readily damages model surface profiles through desublimation and frost, compromising test data accuracy. Consequently, cryogenic wind tunnels must enforce rigorous water vapor control standards. To address potential water vapor effects during cryogenic wind tunnel testing, high-resolution optical measurement techniques were employed to quantify the spatiotemporal evolution of desublimation frost thickness on a typical supercritical airfoil surface. Combined with numerical simulations, the mechanisms governing the frost layer’s influence on aerodynamic characteristics and flow field structures were systematically investigated. The results reveal that the influence of water vapor desublimation on the aerodynamic characteristics under diverse cryogenic working conditions has a commonality, and the difference in aerodynamic parameters shows an increasing tendency as the frost time increases; water vapor desublimation has an obvious influence on the flow structure of the airfoil and its pressure distribution on the surface, which increases flow instability and leads to the backward shift of the shock wave position; larger frost thickness gradients along the flow direction cause more drastic changes in pressure distribution and flow structure; and a larger rate of water vapor desublimation results from a lower temperature and a higher concentration of water vapor in the test environment, which causes frosting to have a more severe impact on the airfoil’s aerodynamic characteristics and flow structure. The findings establish a technical basis for cryogenic wind tunnel moisture control standards and provide a solid foundation for the refined assessment of aerodynamic benefits of the camber morphing wing. Full article
(This article belongs to the Special Issue Smart Structures and Applications in Aerospace Engineering)
Show Figures

Figure 1

Back to TopTop