Interactive Friction Modelling and Digitally Enhanced Evaluation of Lubricant Performance During Aluminium Hot Stamping
Abstract
:1. Introduction
2. Methodology
3. Experimental Studies and Interactive Friction Modelling of the Transient Lubricant Behaviour
3.1. Experimental Results and Discussion of the Transient Lubricant Behaviour
3.2. Interactive Friction Modelling
4. Digitally Enhanced Evaluation and Comparison of Lubricant Performance
5. Conclusions
- The lubricant breakdown phenomenon was accelerated, leading to shorter breakdown distance as the interfacial temperature and contact pressure increased, which was due to decreased viscosity and additional consumption of the entrapped lubricant. In terms of the change in relative sliding speed, its effect on the transient behaviour was dependent on the competition between increased lubricant thickness due to inletting speed and a decreased viscosity due to frictional heat.
- An interactive friction model was established and calibrated for each lubricant candidate, leading to a quantitative evaluation of performance based on the LLD. It has been found that lubricant #3 presented the most remarkable lubricity, with an excellent performance grade of 98.5%, while lubricant #1 only demonstrates an OPG of 69.4%.
- The tool–workpiece interface during hot stamping has been divided into five key feature regions, namely blank holder, die corner, flat bottom, die shoulder, and side wall. The digitally enhanced lubricant evaluation is capable of identifying the critical regions with the most lubricant failure. For example, lubricant #1 presents the most failure in the die shoulder and blank holder regions, with a performance grade of only 63%.
- The industrial application index is proposed to evaluate the lubricant application in mass forming production by considering not only the lubricity and surface effects but residual cleaning after forming as well. By considering both the lubricity grade and cleanness grade, lubricant #1 demonstrates the best performance among the three candidates.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dohda, K.; Boher, C.; Rezai-Aria, F.; Mahayotsanun, N. Tribology in metal forming at elevated temperatures. Friction 2015, 3, 1–27. [Google Scholar] [CrossRef]
- Ghiotti, A.; Bruschi, S.; Medea, F. Wear onset in hot stamping of aluminium alloys sheets. Wear 2017, 376–377, 484–495. [Google Scholar] [CrossRef]
- Dwivedi, D.K. Adhesive wear behaviour of cast aluminium-silicon alloys: Overview. Mater. Des. 2010, 31, 2517–2531. [Google Scholar] [CrossRef]
- Dohda, K.; Yamamoto, M.; Hu, C.; Dubar, L.; Ehmann, K.F. Galling phenomena in metal forming. Friction 2021, 9, 665–685. [Google Scholar] [CrossRef]
- Decrozant-Triquenaux, J.; Pelcastre, L.; Courbon, C.; Prakash, B.; Hardell, J. Effect of surface engineered tool steel and lubrication on aluminium transfer at high temperature. Wear 2021, 477, 203879. [Google Scholar] [CrossRef]
- Domitner, J.; Silvayeh, Z.; Shafiee Sabet, A.; Öksüz, K.I.; Pelcastre, L.; Hardell, J. Characterization of wear and friction between tool steel and aluminum alloys in sheet forming at room temperature. J. Manuf. Process 2021, 64, 774–784. [Google Scholar] [CrossRef]
- Lee, K.; Moon, C.; Lee, M.-G. A Review on Friction and Lubrication in Automotive Metal Forming: Experiment and Modeling. Int. J. Automot. Technol. 2021, 22, 1743–1761. [Google Scholar] [CrossRef]
- Shah, R.; Woydt, M.; Zhang, S. The economic and environmental significance of sustainable lubricants. Lubricants 2021, 9, 21. [Google Scholar] [CrossRef]
- Kanazawa, Y.; De Laurentis, N.; Kadiric, A. Studies of Friction in Grease-Lubricated Rolling Bearings Using Ball-on-Disc and Full Bearing Tests. Tribol. Trans. 2020, 63, 77–89. [Google Scholar] [CrossRef]
- Yadav, G.; Tiwari, S.; Jain, M.L. Tribological analysis of extreme pressure and anti-wear properties of engine lubricating oil using four ball tester. Mater. Today Proc. 2018, 5, 248–253. [Google Scholar] [CrossRef]
- Hu, C.; Yin, Q.; Zhao, Z.; Ou, H. A new measuring method for friction factor by using ring with inner boss compression test. Int. J. Mech. Sci. 2017, 123, 133–140. [Google Scholar] [CrossRef]
- Mirahmadi, S.J.; Hamedi, M.; Cheraghzadeh, M. Investigating Friction Factor in Forging of Ti-6Al-4V through Isothermal Ring Compression Test. Tribol. Trans. 2015, 58, 778–785. [Google Scholar] [CrossRef]
- Groche, P.; Kramer, P.; Bay, N.; Christiansen, P.; Dubar, L.; Hayakawa, K.; Hu, C.; Kitamura, K.; Moreau, P. Friction coefficients in cold forging: A global perspective. CIRP Ann. 2018, 67, 261–264. [Google Scholar] [CrossRef]
- Zhang, Q.; Felder, E.; Bruschi, S. Evaluation of friction condition in cold forging by using T-shape compression test. J. Mater. Process Technol. 2009, 209, 5720–5729. [Google Scholar] [CrossRef]
- Bay, N.; Olsson, D.D.; Andreasen, J.L. Lubricant test methods for sheet metal forming. Tribol. Int. 2008, 41, 844–853. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Zhang, L.; Hu, Y.; Politis, D.J.; Gharbi, M.M.; Wang, L. Interactive mechanism and friction modelling of transient tribological phenomena in metal forming processes: A review. Friction 2024, 12, 375–395. [Google Scholar] [CrossRef]
- Wang, Z.; Dohda, K.; Haruyama, Y. Effects of entraining velocity of lubricant and sliding velocity on friction behavior in stainless steel sheet rolling. Wear 2006, 260, 249–257. [Google Scholar] [CrossRef]
- Pereira, M.P.; Yan, W.; Rolfe, B.F. Sliding distance, contact pressure and wear in sheet metal stamping. Wear 2010, 268, 1275–1284. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Dhawan, S.; Politis, D.J.; Zhang, J.; Dini, D.; Hu, L.; Gharbi, M.M.; Wang, L. Digitally-enhanced lubricant evaluation scheme for hot stamping applications. Nat. Commun. 2022, 13, 5748. [Google Scholar] [CrossRef]
- Liu, H.; Yang, X.; Politis, D.J.; Shi, H.; Wang, L. Evaluation framework of digital characteristics (DC) enhanced lubricant: Consideration of essential geometric features for hot-stamped components. J. Manuf. Syst. 2024, 75, 150–162. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Politis, D.J.; Wang, L. Digitally enhanced lubricant evaluation and improvement framework through developing digital characteristics (DC) for hot forging of aluminium alloys. J. Manuf. Syst. 2024, 76, 281–292. [Google Scholar] [CrossRef]
- Yang, X.; Liu, X.; Liu, H.; Politis, D.J.; Leyvraz, D.; Wang, L. Experimental and modelling study of friction evolution and lubricant breakdown behaviour under varying contact conditions in warm aluminium forming processes. Tribol. Int. 2021, 158, 106934. [Google Scholar] [CrossRef]
- Mia, M.; Anwar, S.; Yang, X. Development of interactive friction model for machining considering the instantaneous interfacial characteristics. J. Mater. Process Technol. 2023, 322, 118203. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Q.; Zheng, Y.; Liu, X.; Politis, D.; El Fakir, O.; Wang, L. Investigation of the friction coefficient evolution and lubricant breakdown behaviour of AA7075 aluminium alloy forming processes at elevated temperatures. Int. J. Extrem. Manuf. 2021, 3, 25002. [Google Scholar] [CrossRef]
- Kusiak, A. Smart manufacturing must embrace big data. Nature 2017, 544, 23–25. [Google Scholar] [CrossRef]
- Scheffler, M.; Aeschlimann, M.; Albrecht, M.; Bereau, T.; Bungartz, H.-J.; Felser, C.; Greiner, M.; Groß, A.; Koch, C.T.; Kremer, K.; et al. FAIR data enabling new horizons for materials research. Nature 2022, 604, 635–642. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A.Y.C. Digital Twins and Cyber–Physical Systems toward Smart Manufacturing and Industry 4.0, Correlation and Comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Majeed, A.; Zhang, Y.; Ren, S.; Lv, J.; Peng, T.; Waqar, S.; Yin, E. A big data-driven framework for sustainable and smart additive manufacturing. Robot. Comput. Integr. Manuf. 2021, 67, 102026. [Google Scholar] [CrossRef]
- Cui, Y.; Kara, S.; Chan, K.C. Manufacturing big data ecosystem: A systematic literature review. Robot. Comput. Integr. Manuf. 2020, 62, 101861. [Google Scholar] [CrossRef]
- Sun, J.; Peng, W.; Ding, J.; Li, X.; Zhang, D. Key Intelligent Technology of Steel Strip Production through Process. Metals 2018, 8, 597. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C.; Zhang, J.; Zhong, R. Big data analytics for intelligent manufacturing systems: A review. J. Manuf. Syst. 2022, 62, 738–752. [Google Scholar] [CrossRef]
- Flammini, A.; Ferrari, P.; Marioli, D.; Sisinni, E.; Taroni, A. Wired and wireless sensor networks for industrial applications. Microelectronics J. 2009, 40, 1322–1336. [Google Scholar] [CrossRef]
- Urbina Coronado, P.D.; Lynn, R.; Louhichi, W.; Parto, M.; Wescoat, E.; Kurfess, T. Part data integration in the Shop Floor Digital Twin: Mobile and cloud technologies to enable a manufacturing execution system. J. Manuf. Syst. 2018, 48, 25–33. [Google Scholar] [CrossRef]
- Khandai, B.K.; Shukla, S.; Muvvala, G. Real-time monitoring of temperature gradients and bending mechanism in multi-scan laser forming process. J. Manuf. Process 2024, 119, 975–986. [Google Scholar] [CrossRef]
- He, X.; Welo, T.; Ma, J. In-process, real-time monitoring of forming forces in rotary draw bending process. Int. J. Adv. Manuf. Technol. 2024, 134, 4651–4666. [Google Scholar] [CrossRef]
- Czichos, H. Failure criteria in thin film lubrication- the concept of a failure surface. Tribology 1974, 7, 14–20. [Google Scholar] [CrossRef]
- Begelinger, A.; De Gee, A.W.J. Failure of thin film lubrication—A detailed study of the lubricant film breakdown mechanism. Wear 1982, 77, 57–63. [Google Scholar] [CrossRef]
- Bhushan, B. Introduction to Tribology; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
Specific Gravity @ 15 °C | Kinematic Viscosity (cSt) @ 40 °C | Dry Matter (%) | |
---|---|---|---|
Lubricant #1 | 0.92 | 123 | 0.15 |
Lubricant #2 | 1.05 | 463 | 0.24 |
Lubricant #3 | 0.89 | 372 | 0.59 |
Test Condition No. | Temperature (°C) | Load (N) | Speed (mm/s) |
---|---|---|---|
1 | 300 | 5 | 30 |
2 | 300 | 5 | 50 |
3 | 300 | 10 | 50 |
4 | 250 | 5 | 30 |
5 | 250 | 5 | 50 |
6 | 250 | 10 | 50 |
Test Condition No. | Temperature (°C) | Load (N) | Speed (mm/s) |
---|---|---|---|
1 | 250 | 5 | 50 |
2 | 300 | 5 | 50 |
3 | 350 | 5 | 50 |
4 | 400 | 5 | 50 |
5 | 300 | 10 | 50 |
6 | 300 | 5 | 30 |
Test Condition No. | Temperature (°C) | Load (N) | Speed (mm/s) |
---|---|---|---|
1 | 250 | 5 | 30 |
2 | 300 | 5 | 30 |
3 | 350 | 5 | 30 |
4 | 400 | 5 | 30 |
5 | 300 | 10 | 50 |
6 | 300 | 5 | 50 |
Parameter | ||||||
Value | 1.25 | 2.45 | 1.85 | 1.48 | 0.44 | 1.20 |
Parameter | ||||||
Value | 1.52 × 109 | 12.29 × 101 | 7.04 × 104 | 0.090 | 18.81 | |
Parameter | ||||||
Value | 5.43 × 104 | 77.26 | 1.55 | 1.89 | 7.45 | 0.15 |
Parameter | ||||||
Value | 1.24 | 2.56 | 1.85 | 1.21 | 0.40 | 1.19 |
Parameter | ||||||
Value | 7.03 × 107 | 10.53 × 101 | 9.03 × 104 | 0.099 | 2.20 | |
Parameter | ||||||
Value | 5.52 × 104 | 68.21 | 1.65 | 1.92 | 5.50 | 0.24 |
Parameter | ||||||
Value | 0.94 | 3.09 | 1.205 | 2.14 | 1.56 | 1.625 |
Parameter | ||||||
Value | 1.31 × 104 | 59.40 | 19.30 | 2.83 | 12.70 | |
Parameter | ||||||
Value | 4.82 × 104 | 68.32 | 1.60 | 1.99 | 2.49 | 0.59 |
Weighted Lubricity Grade (%) | Cleanness Grade (%) | Industrial Application Index (%) | |
---|---|---|---|
Lubricant #1 | 69.4 | 84.6 | 77.0 |
Lubricant #2 | 82.9 | 42.1 | 62.5 |
Lubricant #3 | 98.5 | 53.5 | 76.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Liu, H.; Wu, V.; Politis, D.J.; Wang, L. Interactive Friction Modelling and Digitally Enhanced Evaluation of Lubricant Performance During Aluminium Hot Stamping. Lubricants 2024, 12, 417. https://doi.org/10.3390/lubricants12120417
Yang X, Liu H, Wu V, Politis DJ, Wang L. Interactive Friction Modelling and Digitally Enhanced Evaluation of Lubricant Performance During Aluminium Hot Stamping. Lubricants. 2024; 12(12):417. https://doi.org/10.3390/lubricants12120417
Chicago/Turabian StyleYang, Xiao, Heli Liu, Vincent Wu, Denis J. Politis, and Liliang Wang. 2024. "Interactive Friction Modelling and Digitally Enhanced Evaluation of Lubricant Performance During Aluminium Hot Stamping" Lubricants 12, no. 12: 417. https://doi.org/10.3390/lubricants12120417
APA StyleYang, X., Liu, H., Wu, V., Politis, D. J., & Wang, L. (2024). Interactive Friction Modelling and Digitally Enhanced Evaluation of Lubricant Performance During Aluminium Hot Stamping. Lubricants, 12(12), 417. https://doi.org/10.3390/lubricants12120417