Special Issue "Interface between Offshore Renewable Energy and the Environment"

A special issue of Journal of Marine Science and Engineering (ISSN 2077-1312). This special issue belongs to the section "Marine Energy".

Deadline for manuscript submissions: 30 September 2023 | Viewed by 3798

Special Issue Editors

School of Natural and Built Environment, Queen's University Belfast, Northern Ireland, UK
Interests: coastal processes; renewable energy; hydrodynamic modelling; environmental impacts
Special Issues, Collections and Topics in MDPI journals
Dr. Nicholas Baker-Horne
E-Mail Website
Guest Editor
School of Natural and Built Environment, Queen's University Belfast, Northern Ireland, UK
Interests: renewable energy; collision risk modelling; marine ecology; environmental impacts

Special Issue Information

Dear Colleagues,

Marine renewable energy extraction from offshore wave, tides, and wind energy converters has the potential to ease the global dependence on fossil fuels and contribute significantly to providing energy security for future generations. This requires the installation of large arrays of converters in coastal and shelf regions. However, there remains concerns regarding the interaction between the infrastructure and the marine environment (including, but not limited to, marine mammals, elasmobranchs, seabirds, fish, and benthic invertebrates).

High-quality papers are encouraged for publication on all aspects of the interface between the environment and offshore marine renewables. Research areas are envisaged to include, but are not restricted to: modelling and quantification of device-environment interactions (including arrays) from individual to population-level effects, as mentioned below.

  • New (monitoring) technologies and methods;
  • Management of space including marine spatial planning;
  • Collision risk;
  • Marine fauna displacement, avoidance, barrier effects;
  • Marine fauna attraction and reef effects;
  • Noise/soundscapes;
  • Electromagnetic fields;
  • Bio-physical change (including sediment and flow dynamics and bio-physical oceanographic processes).

Dr. Louise Kregting
Dr. Nicholas Baker-Horne
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Marine Science and Engineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hydrokinetic
  • marine animals
  • hydrodynamics
  • environmental interactions
  • tides
  • wind
  • waves

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Towards Estimating Probability of Fish–Turbine Encounter: Using Drifters Equipped with Acoustic Tags to Verify the Efficacy of an Array of Acoustic Receivers
J. Mar. Sci. Eng. 2023, 11(8), 1592; https://doi.org/10.3390/jmse11081592 - 14 Aug 2023
Viewed by 366
Abstract
An area has been designated for demonstrating the utility of marine hydrokinetic turbines in Minas Passage, Bay of Fundy. Marine renewable energy may be useful for the transition from carbon-based energy sources, but there is concern for the safety of fish that might [...] Read more.
An area has been designated for demonstrating the utility of marine hydrokinetic turbines in Minas Passage, Bay of Fundy. Marine renewable energy may be useful for the transition from carbon-based energy sources, but there is concern for the safety of fish that might encounter turbines. Acoustic receivers that detect signals from acoustically tagged fish that pass through the tidal demonstration area and the detection efficiency of tag signals might be used to estimate the likelihood of fish encountering marine hydrokinetic turbines. The method requires that tagged fish passing through the development area will be reliably detected by a receiver array. The present research tests the reliability with which passing tags are detected by suspending tags beneath GPS-tracked drifters. Drifters carrying high residency Innovasea tags that transmitted every 2 s were usually detected by the receiver array even in fast currents during spring tides but pulse-position modulation tags were inadequate. Sometimes very few high residency tag signals were detected when fast tidal currents swept a drifter through the receiver array, so increasing the transmission interval degrades performance at the tidal energy development area. High residency tags suspended close to the sea surface were slightly less likely to be detected if they passed by during calm conditions. Previously measured detection efficiencies were found to slightly overestimate the chances of a high residency tag carried by a drifter being detected as it passed by a receiver. This works elucidates the effectiveness with which acoustically tagged fish are detected in fast, highly turbulent tidal currents and informs the application of detection efficiency measurements to calculate the probability that fish encounter a marine hydrokinetic turbine. Full article
(This article belongs to the Special Issue Interface between Offshore Renewable Energy and the Environment)
Show Figures

Figure 1

Article
Recording the Magnetic Field Produced by an Undersea Energy Generating Device: A Low-Cost Alternative
J. Mar. Sci. Eng. 2023, 11(7), 1423; https://doi.org/10.3390/jmse11071423 - 15 Jul 2023
Viewed by 612
Abstract
This work describes the characteristics of a device capable of detecting the magnetic field generated by a submerged electrical conductor. This low-cost apparatus is based on the open-source Arduino platform and offers the possibility of monitoring magnetic fields generated by undersea cables. Measuring [...] Read more.
This work describes the characteristics of a device capable of detecting the magnetic field generated by a submerged electrical conductor. This low-cost apparatus is based on the open-source Arduino platform and offers the possibility of monitoring magnetic fields generated by undersea cables. Measuring magnetic fields generated by undersea cables facilitates the development of technologies that will harness marine energy potential. The research is based on published parameters of magnetic field values generated by existing submarine cables. A coil was built to simulate an approximate magnetic field at 10 mT. The magnetic field generated by the coil was used as a reference standard. The device developed has a measurement probe built with an array of SS49E Hall effect sensors placed in a straight line and separated 5 cm from each other. A DS18B20 temperature sensor was added to make the necessary corrections and cancel the influence of temperature during the measurements. A microSD card module was attached to store continuous magnetic field measurements. The device was adjusted under strict laboratory conditions. The functionality of the device developed was confirmed by two samplings in the sea. In these samples, the magnetic field generated by the coil was measured in the entire water column from a depth of 3 m to 150 m. Results indicate that the prototype can successfully perform the necessary functions to quantify the underwater magnetic field accurately with about 10 µT accuracy. Full article
(This article belongs to the Special Issue Interface between Offshore Renewable Energy and the Environment)
Show Figures

Figure 1

Article
Measuring Detection Efficiency of High-Residency Acoustic Signals for Estimating Probability of Fish–Turbine Encounter in a Fast-Flowing Tidal Passage
J. Mar. Sci. Eng. 2023, 11(6), 1172; https://doi.org/10.3390/jmse11061172 - 02 Jun 2023
Cited by 1 | Viewed by 667
Abstract
Semidiurnal tidal currents can exceed 5 ms1 in Minas Passage, Bay of Fundy, where a tidal energy demonstration area has been designated to generate electricity using marine hydrokinetic turbines. The risk of harmful fish–turbine interaction cannot be dismissed for either migratory [...] Read more.
Semidiurnal tidal currents can exceed 5 ms1 in Minas Passage, Bay of Fundy, where a tidal energy demonstration area has been designated to generate electricity using marine hydrokinetic turbines. The risk of harmful fish–turbine interaction cannot be dismissed for either migratory or local fish populations. Individuals belonging to several fish populations were acoustically tagged and monitored by using acoustic receivers moored within the Minas Passage. Detection efficiency ρ is required as the first step to estimate the probability of fish–turbine encounter. Moored Innovasea HR2 receivers and high-residency (HR) tags were used to obtain detection efficiency ρ as a function of range and current speed, for near-seafloor signal paths within the tidal energy development area. Strong tidal currents moved moorings, so HR tag signals and their reflections from the sea surface were used to measure ranges from tags to receivers. HR2 self-signals that reflected off the sea surface showed which moorings were displaced to lower and higher levels on the seafloor. Some of the range testing paths had anomalously low ρ, which might be attributed to variable bathymetry blocking the line-of-sight signal path. Clear and blocked signal paths accord with mooring levels. The application of ρ is demonstrated for the calculation of abundance, effective detection range, and detection-positive intervals. High-residency signals were better detected than pulse position modulation (PPM) signals. Providing that the presently obtained ρ applies to tagged fish that swim higher in the water column, there is a reasonable prospect that probability of fish–turbine encounter can be estimated by monitoring fish that carry HR tags. Full article
(This article belongs to the Special Issue Interface between Offshore Renewable Energy and the Environment)
Show Figures

Figure 1

Article
Probability of Atlantic Salmon Post-Smolts Encountering a Tidal Turbine Installation in Minas Passage, Bay of Fundy
J. Mar. Sci. Eng. 2023, 11(5), 1095; https://doi.org/10.3390/jmse11051095 - 22 May 2023
Cited by 2 | Viewed by 925
Abstract
Tidal stream energy is a renewable energy resource that might be developed to offset carbon emissions. A tidal energy demonstration (TED) area has been designated in Minas Passage, Bay of Fundy, for testing and installing marine hydrokinetic (MHK) turbines. Regulations require quantification of [...] Read more.
Tidal stream energy is a renewable energy resource that might be developed to offset carbon emissions. A tidal energy demonstration (TED) area has been designated in Minas Passage, Bay of Fundy, for testing and installing marine hydrokinetic (MHK) turbines. Regulations require quantification of the potential for MHK turbine installations to harm local populations of marine animals. Here, we use acoustic telemetry to quantify the probability that post-smolt inner Bay of Fundy salmon encounter a turbine installation at the TED area. Previous work has quantified the detection efficiency of Innovasea HR acoustic tags as a function of the current speed and range from a moored HR2 receiver and also demonstrated that drifters carrying HR tags will be effectively detected when the drifter track crosses the array of HR2 receivers in Minas Passage. Salmon smolts were tagged and released in Gaspereau and Stewiacke Rivers, Nova Scotia, in order that the HR2 receiver array could monitor seaward migration of the post-smolts through Minas Passage and particularly through the TED area. Presently, we formulate and apply a method by which tag signals detected by the HR2 array can be used to estimate the expected number of times that a post-smolt would encounter a single near-surface MHK turbine installation during its seaward migration. Full article
(This article belongs to the Special Issue Interface between Offshore Renewable Energy and the Environment)
Show Figures

Figure 1

Article
No Observed Effects of Subsea Renewable Energy Infrastructure on Benthic Environments
J. Mar. Sci. Eng. 2023, 11(5), 1061; https://doi.org/10.3390/jmse11051061 - 16 May 2023
Viewed by 632
Abstract
For the tidal energy industry to move forward to commercialisation, understanding the interaction between the environment and tidal energy converters (TEC) is essential. The benthic environment may be particularly vulnerable to development by changing the existing physical and ecological characteristics. To assess measurable [...] Read more.
For the tidal energy industry to move forward to commercialisation, understanding the interaction between the environment and tidal energy converters (TEC) is essential. The benthic environment may be particularly vulnerable to development by changing the existing physical and ecological characteristics. To assess measurable changes of the infrastructural and operation activity of the Deep Green subsea TEC known as the kite, developed by Minesto, benthic surveys were carried out in the Narrows, Strangford Lough, Northern Ireland. At the Minesto site and two other locations, scientific divers carried out circular cardinal-direction benthic camera surveys prior to and after five years of operation. A diverse assemblage of sessile, vagile and mobile species associated with substrate types were identified. No significant changes at any of the sites were recorded in the abundance of species, substrate type or species diversity over the five-year period. The results show that no impact on benthic communities was detected as a result of the operation and deployment of the infrastructure associated with the technology. Full article
(This article belongs to the Special Issue Interface between Offshore Renewable Energy and the Environment)
Show Figures

Figure 1

Back to TopTop