Property, Evaluation and Development of Dentin Materials

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Dental Biomaterials".

Deadline for manuscript submissions: 30 June 2026 | Viewed by 7193

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmacology, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia
Interests: biomaterials; fluorides; salivary biomarkers; pharmacology; antibiotics

E-Mail Website
Guest Editor
Department of Pharmacology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia
Interests: antibiotic stewardship; oral health; oral microbiome; saliva
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Human teeth have a more complicated structure, better mechanical properties, and better biocompatibility than all dental restorative materials invented to date. Understanding the various mechanical properties of natural teeth is the basis of dental restoration material research and can provide a reference for evaluating the mechanical properties of new dental materials. The history of dentin substitute materials started with calcium hydroxide and its ability to form reparative dentin. Later, glass ionomer cements (GICs) were introduced, which advanced the era of restorative dentistry. Along with the modification of GIC materials came improvements in their physical and mechanical properties to withstand occlusal forces. Currently, different, newer dentin substitutive materials are being introduced with improved mechanical and functional properties. Biodentin, smart dentin replacement materials (SDRs), and bio-active glass are some examples. Dentin substitutes are designed to be biocompatible, impermeable, anti-bacterial, regenerative, non-absorbable, and easy to manipulate.

To date, a material that can completely take the place of human teeth with regard to biological and mechanical properties has not yet been developed.

The aim of this Special Issue is to discuss new dentin materials and their clinical possibilities. Both research and review articles focusing on the properties, evaluation, and development of dentin materials are welcome.

Dr. Ivana Šutej
Dr. Kristina Peros
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • dentin
  • calcified tissues
  • mechanical properties
  • biomaterials
  • restorative materials
  • viscoelasticity
  • biomimetics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

25 pages, 3746 KB  
Article
Eighty-Four-Month Clinical Outcomes of Autologous Dentin Graft Using Tooth Transformer® and Concentrated Growth Factors in Maxillary Atrophy: A Retrospective Study of 31 Patients
by Gianna Dipalma, Alessio Danilo Inchingolo, Francesca Calò, Rosalba Lagioia, Paola Bassi, Elisabetta de Ruvo, Francesco Inchingolo, Andrea Palermo, Grazia Marinelli and Angelo Michele Inchingolo
J. Funct. Biomater. 2025, 16(10), 357; https://doi.org/10.3390/jfb16100357 - 23 Sep 2025
Viewed by 1423
Abstract
Aim: This retrospective observational clinical cohort study evaluated 84-month clinical and radiographic outcomes of a regenerative protocol combining autologous dentin grafts processed with the Tooth Transformer® device and Concentrated Growth Factors (CGFs) in patients with severe maxillary atrophy undergoing sinus augmentation with [...] Read more.
Aim: This retrospective observational clinical cohort study evaluated 84-month clinical and radiographic outcomes of a regenerative protocol combining autologous dentin grafts processed with the Tooth Transformer® device and Concentrated Growth Factors (CGFs) in patients with severe maxillary atrophy undergoing sinus augmentation with simultaneous implant placement. Materials and Methods: Thirty-one patients (30–75 years) with residual crestal bone height ≥ 5 mm and requiring extraction of ≥2 molars were included. Extracted teeth were processed with the Tooth Transformer® to obtain demineralized dentin granules (500–1000 µm), which were combined with CGFs prepared using the Medifuge MF200® to form “sticky bone.” All patients underwent sinus lift via a lateral window approach (Hilt Tatum technique) with simultaneous placement of 98 implants (12–14 mm), which were loaded after six months. Results: At the 84-month follow-up, no implant failures or peri-implantitis were recorded. CBCT and clinical evaluations showed stable regenerated bone volume and absence of peri-implant bone resorption. All patients received fixed prostheses within six months without complications. Conclusions: The combined use of processed autologous dentin and CGFs proved to be a safe, predictable, and effective regenerative technique in cases of severe maxillary atrophy, with a 100% implant survival rate at five years. Full article
(This article belongs to the Special Issue Property, Evaluation and Development of Dentin Materials)
Show Figures

Figure 1

11 pages, 1432 KB  
Article
Thermal Dynamics of Laser-Irradiated Trilayer Bonded-Zirconia Structures
by Mitchell Tharp, Jaccare Jauregui-Ulloa, Grace Mendonça De Souza and Susana Salazar Marocho
J. Funct. Biomater. 2025, 16(4), 137; https://doi.org/10.3390/jfb16040137 - 11 Apr 2025
Viewed by 668
Abstract
This study aims to assess the thermal dynamics of supporting structures during laser-assisted debonding of bonded yttrium-stabilized zirconia (YSZ) ceramic. We tested the hypothesis that the heat transfer to dentin analog material and composite resin resembles that of dentin. Thirty sintered YSZ (ZirCAD, [...] Read more.
This study aims to assess the thermal dynamics of supporting structures during laser-assisted debonding of bonded yttrium-stabilized zirconia (YSZ) ceramic. We tested the hypothesis that the heat transfer to dentin analog material and composite resin resembles that of dentin. Thirty sintered YSZ (ZirCAD, Ivoclar, Schann, Liechtenstein) slabs (4 mm diameter, 1 mm thickness) were air particle abraded, followed by two coats of Monobond Plus (Ivoclar). The slabs were bonded to exposed occlusal dentin, NEMA G10 dentin analog, or composite resin cylinders using Multilink Automix (Ivoclar) dual-cured cement. The bonded YSZ specimens (n = 10/group) subjected to irradiation with an Er,Cr:YSGG laser (Waterlase MD, Biolase, Foothill Ranch, CA, USA) at 7.5 W, 25 Hz, with 50% water and air for 15 s. Heat transfer during laser irradiation was monitored with an infrared camera (Optris PI 640, Optris GmbH, Berlin, Germany) at 0.1-s intervals. Data were analyzed using one-way ANOVA, which showed no significant differences in mean temperature between zirconia and cement layers across the substrates (composite resin, G10, dentin) (p = 0.0794). These results suggest flexibility in substrate choice for future thermal dynamics studies under laser irradiation. Full article
(This article belongs to the Special Issue Property, Evaluation and Development of Dentin Materials)
Show Figures

Figure 1

12 pages, 3455 KB  
Article
Impact of Calcium Lactate Pretreatment on Enamel Fluoride Uptake: A Comparative In Vitro Study of Different Fluoride Types and Concentrations
by Fjolla Kullashi Spahija, Ivana Sutej, Kresimir Basic, Kreshnik Spahija and Kristina Peros
J. Funct. Biomater. 2024, 15(9), 269; https://doi.org/10.3390/jfb15090269 - 16 Sep 2024
Cited by 1 | Viewed by 3550
Abstract
(1) Background: This study aimed to establish the effect of calcium lactate enamel pretreatment related to different fluoride types and concentrations on the enamel uptake of alkali-soluble fluorides. (2) Materials: In a blind and randomized in vitro study, a total of 60 teeth [...] Read more.
(1) Background: This study aimed to establish the effect of calcium lactate enamel pretreatment related to different fluoride types and concentrations on the enamel uptake of alkali-soluble fluorides. (2) Materials: In a blind and randomized in vitro study, a total of 60 teeth are used. The first 30 teeth were cut and randomly allocated into one of the following treatments: (A) calcium lactate pretreatment followed by three different fluoride solutions; (B) the “Fluoride only” group, with slabs treated with three different fluoride solutions; (C) the “Calcium only” group, with slabs treated with calcium lactate solution; (D) slabs treated with deionized water (negative control group). The next 30 teeth underwent all the above described group procedures but were treated with lower fluoride concentrations. Fluoride was extracted from enamel using 1 M KOH solution and analyzed using a fluoride ion-specific electrode. (3) Results: The findings revealed that slabs treated with NaF following calcium lactate pretreatment exhibited significantly greater enamel uptake of alkali-soluble fluoride compared to other substrates. This significant effect was not observed at lower fluoride concentrations. (4) Conclusion: The study demonstrates that pretreatment with calcium lactate followed by treatment with NaF at 226 ppm F significantly enhances the uptake of alkali-soluble fluoride in enamel compared to other fluoride types. Full article
(This article belongs to the Special Issue Property, Evaluation and Development of Dentin Materials)
Show Figures

Figure 1

Other

Jump to: Research

19 pages, 1061 KB  
Systematic Review
Autologous Tooth-Derived Biomaterials in Alveolar Bone Regeneration: A Systematic Review of Clinical Outcomes and Histological Evidence
by Angelo Michele Inchingolo, Grazia Marinelli, Francesco Inchingolo, Roberto Vito Giorgio, Valeria Colonna, Benito Francesco Pio Pennacchio, Massimo Del Fabbro, Gianluca Tartaglia, Andrea Palermo, Alessio Danilo Inchingolo and Gianna Dipalma
J. Funct. Biomater. 2025, 16(10), 367; https://doi.org/10.3390/jfb16100367 - 1 Oct 2025
Viewed by 1079
Abstract
Background: Autologous tooth-derived grafts have recently gained attention as an innovative alternative to conventional biomaterials for alveolar ridge preservation (ARP) and augmentation (ARA). Their structural similarity to bone and osteoinductive potential support clinical use. Methods: This systematic review was conducted according to PRISMA [...] Read more.
Background: Autologous tooth-derived grafts have recently gained attention as an innovative alternative to conventional biomaterials for alveolar ridge preservation (ARP) and augmentation (ARA). Their structural similarity to bone and osteoinductive potential support clinical use. Methods: This systematic review was conducted according to PRISMA 2020 guidelines and registered in PROSPERO (CRD420251108128). A comprehensive search was performed in PubMed, Scopus, and Web of Science (2010–2025). Randomized controlled trials (RCTs), split-mouth, and prospective clinical studies evaluating autologous dentin-derived grafts were included. Two reviewers independently extracted data and assessed risk of bias using Cochrane RoB 2.0 (for RCTs) and ROBINS-I (for non-randomized studies). Results: Nine studies involving 321 patients were included. Autologous dentin grafts effectively preserved ridge dimensions, with horizontal and vertical bone loss significantly reduced compared to controls. Histomorphometric analyses reported 42–56% new bone formation within 4–6 months, with minimal residual graft particles and favorable vascularization. Implant survival ranged from 96–100%, with stable marginal bone levels and no major complications. Conclusions: Autologous tooth-derived biomaterials represent a safe, biologically active, and cost-effective option for alveolar bone regeneration, showing comparable or superior results to xenografts and autologous bone. Further standardized, long-term RCTs are warranted to confirm their role in clinical practice. Full article
(This article belongs to the Special Issue Property, Evaluation and Development of Dentin Materials)
Show Figures

Figure 1

Back to TopTop