Feature Papers 2013

A special issue of Insects (ISSN 2075-4450).

Deadline for manuscript submissions: closed (31 August 2013) | Viewed by 55361

Special Issue Editor


E-Mail Website
Guest Editor
Department of Entomology, University of Georgia, 413 Biological Sciences Building, Athens, GA 30602-2603, USA
Interests: termite behavior; field efficacy of termite baits; new chemistries for novel termite control tactics; determination of subterranean termite social structure using agonism; morphological characters; cuticular hydrocarbon analysis and genetic markers
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

795 KiB  
Article
Resistance is not Futile: It Shapes Insecticide Discovery
by Margaret C. Hardy
Insects 2014, 5(1), 227-242; https://doi.org/10.3390/insects5010227 - 23 Jan 2014
Cited by 32 | Viewed by 10119
Abstract
Conventional chemical control compounds used for the management of insect pests have been much maligned, but still serve a critical role in protecting people and agricultural products from insect pests, as well as conserving biodiversity by eradicating invasive species. Although biological control can [...] Read more.
Conventional chemical control compounds used for the management of insect pests have been much maligned, but still serve a critical role in protecting people and agricultural products from insect pests, as well as conserving biodiversity by eradicating invasive species. Although biological control can be an effective option for area-wide management of established pests, chemical control methods are important for use in integrated pest management (IPM) programs, as well as in export treatments, eradicating recently arrived invasive species, and minimizing population explosions of vectors of human disease. Cogitated research and development programs have continued the innovation of insecticides, with a particular focus on combating insecticide resistance. Recent developments in the fields of human health, protecting the global food supply, and biosecurity will be highlighted. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Graphical abstract

7839 KiB  
Article
Adaptations to “Thermal Time” Constraints in Papilio: Latitudinal and Local Size Clines Differ in Response to Regional Climate Change
by J. Mark Scriber, Ben Elliot, Emily Maher, Molly McGuire and Marjie Niblack
Insects 2014, 5(1), 199-226; https://doi.org/10.3390/insects5010199 - 21 Jan 2014
Cited by 19 | Viewed by 7384
Abstract
Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval [...] Read more.
Adaptations to “thermal time” (=Degree-day) constraints on developmental rates and voltinism for North American tiger swallowtail butterflies involve most life stages, and at higher latitudes include: smaller pupae/adults; larger eggs; oviposition on most nutritious larval host plants; earlier spring adult emergences; faster larval growth and shorter molting durations at lower temperatures. Here we report on forewing sizes through 30 years for both the northern univoltine P. canadensis (with obligate diapause) from the Great Lakes historical hybrid zone northward to central Alaska (65° N latitude), and the multivoltine, P. glaucus from this hybrid zone southward to central Florida (27° N latitude). Despite recent climate warming, no increases in mean forewing lengths of P. glaucus were observed at any major collection location (FL to MI) from the 1980s to 2013 across this long latitudinal transect (which reflects the “converse of Bergmann’s size Rule”, with smaller females at higher latitudes). Unlike lower latitudes, the Alaska, Ontonogon, and Chippewa/Mackinac locations (for P. canadensis) showed no significant increases in D-day accumulations, which could explain lack of size change in these northernmost locations. As a result of 3–4 decades of empirical data from major collection sites across these latitudinal clines of North America, a general “voltinism/size/D-day” model is presented, which more closely predicts female size based on D-day accumulations, than does latitude. However, local “climatic cold pockets” in northern Michigan and Wisconsin historically appeared to exert especially strong size constraints on female forewing lengths, but forewing lengths quickly increased with local summer warming during the recent decade, especially near the warming edges of the cold pockets. Results of fine-scale analyses of these “cold pockets” are in contrast to non-significant changes for other Papilio populations seen across the latitudinal transect for P. glaucus and P. canadensis in general, highlighting the importance of scale in adaptations to climate change. Furthermore, we also show that rapid size increases in cold pocket P. canadensis females with recent summer warming are more likely to result from phenotypic plasticity than genotypic introgression from P. glaucus, which does increase size in late-flight hybrids and P. appalachiensis. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Graphical abstract

317 KiB  
Article
Effectiveness of a Reduced-Risk Insecticide Based Bed Bug Management Program in Low-Income Housing
by Narinderpal Singh, Changlu Wang and Richard Cooper
Insects 2013, 4(4), 731-742; https://doi.org/10.3390/insects4040731 - 28 Nov 2013
Cited by 21 | Viewed by 8005
Abstract
Bed bug (Cimex lectularius L.) infestations are becoming increasingly common in low-income communities. Once they are introduced, elimination is very difficult. As part of the efforts to develop effective and safe bed bug management programs, we conducted a laboratory study evaluating the [...] Read more.
Bed bug (Cimex lectularius L.) infestations are becoming increasingly common in low-income communities. Once they are introduced, elimination is very difficult. As part of the efforts to develop effective and safe bed bug management programs, we conducted a laboratory study evaluating the efficacy of a reduced-risk insecticide—Alpine aerosol (0.5% dinotefuran). We then conducted a field evaluation of a reduced-risk insecticide based integrated pest management (IPM) program in low-income family apartments with young children. In laboratory evaluations, direct spray and 5 min exposure to dry Alpine aerosol residue caused 100.0 ± 0.0 and 91.7 ± 8.3% mortality to bed bug nymphs, respectively. Direct Alpine aerosol spray killed 91.3 ± 4.3% of the eggs. The IPM program included education, steam, bagging infested linens, placing intercepting devices under furniture legs and corners of rooms, applying Alpine aerosol and Alpine dust (0.25% dinotefuran, 95% diatomaceous earth dust), and regularly scheduled monitoring and re-treatment. Nine apartments ranging from 1–1,428 (median: 29) bed bugs based on visual inspection and Climbup interceptor counts were included. Over a 6-month period, an average 172 g insecticide (Alpine aerosol + Alpine dust) was used in each apartment, a 96% reduction in pesticide usage compared to chemical only treatment reported in a similar environment. The IPM program resulted in an average of 96.8 ± 2.2% reduction in the number of bed bugs. However, elimination of bed bugs was only achieved in three lightly infested apartments (<30 bed bugs at the beginning). Elimination success was closely correlated with the level of bed bug populations. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Figure 1

863 KiB  
Article
A Mathematic Model That Describes Modes of MdSGHV Transmission within House Fly Populations
by Celeste R. Vallejo, Jo Ann Lee, James E. Keesling, Christopher J. Geden, Verena-Ulrike Lietze and Drion G. Boucias
Insects 2013, 4(4), 683-693; https://doi.org/10.3390/insects4040683 - 20 Nov 2013
Cited by 3 | Viewed by 5710
Abstract
In this paper it is proposed that one potential component by which the Musca domestica salivary gland hypertrophy virus (MdSGHV) infects individual flies is through cuticular damage. Breaks in the cuticle allow entry of the virus into the hemocoel causing the infection. Male [...] Read more.
In this paper it is proposed that one potential component by which the Musca domestica salivary gland hypertrophy virus (MdSGHV) infects individual flies is through cuticular damage. Breaks in the cuticle allow entry of the virus into the hemocoel causing the infection. Male flies typically have a higher rate of infection and a higher rate of cuticular damage than females. A model for the transmission of MdSGHV was formulated assuming several potential and recognized means of transmission. The model yields results that are in agreement with field data that measured the infection rate in house flies on dairy farms in Florida. The results from this model indicate that MdSGHV will be maintained at a stable rate within house fly populations and support the future use of MdSGHV as a birth control agent in house fly management. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Figure 1

846 KiB  
Article
Exploring the Role of Rhodtestolin, A Cardio-Inhibitor from the Testes of Rhodnius prolixus, in Relation to the Structure and Function of Reproductive Organs in Insect Vectors of Chagas Disease
by Ralem Gary Chiang, Jennifer Ann Chiang, Hugh Hoogendoorn and Marli Maria Lima
Insects 2013, 4(4), 593-608; https://doi.org/10.3390/insects4040593 - 30 Oct 2013
Cited by 8 | Viewed by 8012
Abstract
Rhodtestolin is a cardio-inhibitor that was first discovered in testes extracts of the blood-feeding insect, Rhodnius prolixus. Its role in reproduction remains unconfirmed, but if delivered to the female during spermatophore formation, it may serve to calm the female and/or relax the [...] Read more.
Rhodtestolin is a cardio-inhibitor that was first discovered in testes extracts of the blood-feeding insect, Rhodnius prolixus. Its role in reproduction remains unconfirmed, but if delivered to the female during spermatophore formation, it may serve to calm the female and/or relax the vaginal muscles to facilitate delivery and storage of the spermatophore. We describe here the anatomy of reproductive organs in R. prolixus and show that rhodtestolin is present in a low-molecular weight fraction of testes extracts separated by gel filtration, as well as in spermatophores delivered to the female during spermatophore formation. We also report that a rhodtestolin-like factor is present in the testes of R. brethesi, Triatoma dimidiata, T. klugi and Nesotriatoma bruneri, other Reduviidae, which are vectors of Chagas disease. Male secretions in insects are known to modify female behavior after copulation, and the presence of rhodtestolin in several genera of Reduviidae suggests that it plays an important role in reproductive success. Determining this role could lead to developing additional population control strategies for these bugs. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Figure 1

868 KiB  
Article
Sperm Cells of a Primitive Strepsipteran
by James B. Nardi, Juan A. Delgado, Francisco Collantes, Lou Ann Miller, Charles M. Bee and Jeyaraney Kathirithamby
Insects 2013, 4(3), 463-475; https://doi.org/10.3390/insects4030463 - 4 Sep 2013
Cited by 14 | Viewed by 8021
Abstract
The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive [...] Read more.
The unusual life style of Strepsiptera has presented a long-standing puzzle in establishing its affinity to other insects. Although Strepsiptera share few structural similarities with other insect orders, all members of this order share a parasitic life style with members of two distinctive families in the Coleoptera—the order now considered the most closely related to Strepsiptera based on recent genomic evidence. Among the structural features of several strepsipteran families and other insect families that have been surveyed are the organization of testes and ultrastructure of sperm cells. For comparison with existing information on insect sperm structure, this manuscript presents a description of testes and sperm of a representative of the most primitive extant strepsipteran family Mengenillidae, Eoxenos laboulbenei. We compare sperm structure of E. laboulbenei from this family with that of the three other families of Strepsiptera in the other strepsipteran suborder Stylopidia that have been studied as well as with members of the beetle families Meloidae and Rhipiphoridae that share similar life histories with Strepsiptera. Meloids, Rhipiphorids and Strepsipterans all begin larval life as active and viviparous first instar larvae. This study examines global features of these insects’ sperm cells along with specific ultrastructural features of their organelles. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Graphical abstract

272 KiB  
Article
Influence of Age and Nutritional Status on Flight Performance of the Asian Tiger Mosquito Aedes albopictus (Diptera: Culicidae)
by Christian Kaufmann, Lauren F. Collins and Mark R. Brown
Insects 2013, 4(3), 404-412; https://doi.org/10.3390/insects4030404 - 26 Jul 2013
Cited by 18 | Viewed by 7289
Abstract
The Asian tiger mosquito, Aedes albopictus, is a competent vector for arboviruses and recently was implicated as the vector of the first autochthonous cases of dengue and chikungunya in southern Europe. The objective of this study was to analyze the flight performance [...] Read more.
The Asian tiger mosquito, Aedes albopictus, is a competent vector for arboviruses and recently was implicated as the vector of the first autochthonous cases of dengue and chikungunya in southern Europe. The objective of this study was to analyze the flight performance of female Ae. albopictus of different ages that were starved, sugar-fed, or sugar-fed and blood-fed, using flight mills. After three days of starvation post emergence, females flew an average distance of 0.7 ± 0.5 km in 1.9 ± 1.5 h during a 16 h trial period, whereas sugar- or sugar- and blood-fed females of this age covered a significantly higher distance of around 3 km with a mean total flight time of around 6 h. The age of females (up to four weeks) had no effect on performance. The average of maximal continuous flight segments of sugar-fed (2.14 ± 0.69 h) and blood-fed (3.17 ± 0.82 h) females was distinctly higher than of starved females (0.38 ± 0.15 h) of which most flyers (83%) performed maximal flight segments that lasted no longer than 0.5 h. Overall, the results for the laboratory monitored flight performance of Ae. albopictus confirm their ability to disperse a few kilometres between breeding site and host. Full article
(This article belongs to the Special Issue Feature Papers 2013)
Show Figures

Figure 1

Back to TopTop