Inorganic Syntheses Assisted by Microwave Heating
A special issue of Inorganics (ISSN 2304-6740).
Deadline for manuscript submissions: closed (30 May 2014) | Viewed by 52914
Special Issue Editors
Interests: materials science; inorganic solids; chemistry; silicates; glasses; microwave processing
Special Issues, Collections and Topics in MDPI journals
Interests: Crystal chemistry of clays and zeolites; chemistry of hydrous metal oxides in relation to cation separations and purification; water sorption and desorption, nuclear and hazardous waste disposal; kinetics and thermodynamics of cation exchange processes in minerals; Low temperature nanophase and nanocomposite materials; sol-gel chemistry of high-performance ceramics; hydrothermal and microwave-hydrothermal processing; new materials preparation and characterization
Special Issue Information
Dear Colleagues,
Microwave irradiation has been used for many years to accelerate chemical reactions. Nevertheless, over the years a more complex view has emerged because of detailed work by many researchers, primarily in the field of organic chemistry. Inorganic chemists have exploited the advantages of microwave heating not only for its accelerated temperature ramp up, but also for shortening reaction times which could lead to metastable phases or high purity products. The most investigated preparation procedure is, undoubtedly, the solvothermal and hydrothermal synthesis of powders where a drastic reduction of treatment time, from hours to minutes, have been clearly shown. The effects of microwave irradiation on the different crystal morphologies and sizes and crystallinity have been thoroughly investigated but challenges still remain, for example, in the preparation of mixed oxides, hydrated minerals, and many others. The second most investigated area is in the field of nanoparticle preparation, where homogeneous growth rate may occur. In this regard, we should also consider the selective heating of microemulsions where microwaves have played a unique role. Again speaking of nanoparticles, some of the most known preparation techniques are based on ignition by plasma torches ignited and sustained by microwaves. This particular synthetic approach has not yet been applied to all classes of compounds. Of great importance are also all the solid state reactions which are favoured by microwaves especially when low thermal conductive pellets are used. In these cases, diffusion studies are still at their beginning. Also sol–gel preparation of novel compounds can be greatly improved by the volumetric heating which is typical of microwave irradiation. At the end of the list, but not in terms of their importance, are the combustion syntheses which could take advantage of the microwave electromagnetic energy even though they are amongst the most exothermic reactions. The prolongation of a combustion until the consumption of the reactant is possible only under microwaves where combustion temperatures could be prolonged with significant effects on the final morphology of the products.
Microwave apparatuses and reactors with temperature and pressure monitoring devices have been under development in recent years, although several commercial outfits are actively supplying such equipment. The combination of different techniques being the most advanced trends: the combination of microwave irradiation with UV light or ultrasound stimulation, and pressure and laser excitations are just a few of the possibilities. These combinations represent a unique possibility to realize extreme environments with non- expensive devices which are not yet well known to the general synthesis community. Furthermore, the new developments in flow reactors with the advent of microreactors make microwaves even more interesting as a clean and sustainable heating source.
This special issue would deal with the state of the art in inorganic syntheses under microwave irradiation, and welcomes comprehensive reviews and research articles to bring out the widest information available to date, in all of the above areas and beyond; the primary requisite being a basic understanding of the heating mechanism and a complete monitoring of the reaction parameters.
Prof. Dr. Cristina Leonelli
Prof. Dr. Sridhar Komarneni
Guest Editors
Manuscript Submission Information
Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.
Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.
Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.
Keywords
- microwave
- dielectric heating
- microwave reactors
- microwave ignition
- microwave plasma
- microwave-hydrothermal syntheses
- microwave-ultrasonic combined syntheses
Benefits of Publishing in a Special Issue
- Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
- Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
- Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
- External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
- e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.
Further information on MDPI's Special Issue polices can be found here.