
Supplementary Information

1. Powder X-ray Diffraction Measurements

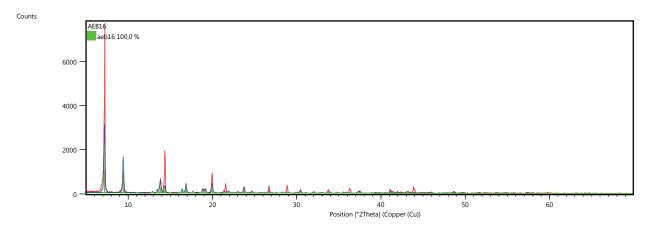

Figure S1. Diffractogram with Rietveld fitting for compound 1. Red, Experimental data of X-ray powder diffractometry of compound 1; Blue, Diffractogram simulated from single crystal X-ray determination; Green, Rietveld fitting.

Figure S2. Diffractogram with Rietveld fitting for compound **2**. Red, Experimental data of X-ray powder diffractometry of compound **2**; Blue, Diffractogram simulated from single crystal X-ray determination; Green, Rietveld fitting.

Figure S3. Diffractogram with Rietveld fitting for compound **3**. Red, Experimental data of X-ray powder diffractometry of compound **3**; Blue, Diffractogram simulated from single crystal X-ray determination; Green, Rietveld fitting.

2. Infrared Spectra

Figure S4. IR spectrum of compound 1.

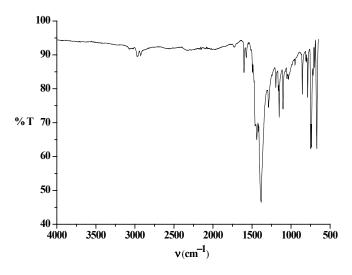


Figure S5. IR spectrum of compound 2.

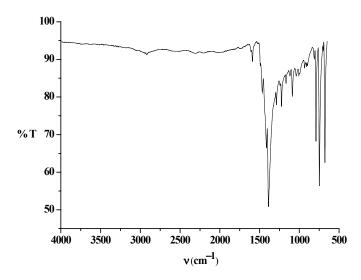
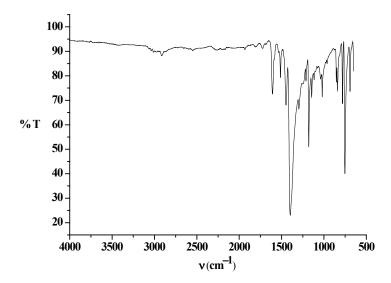
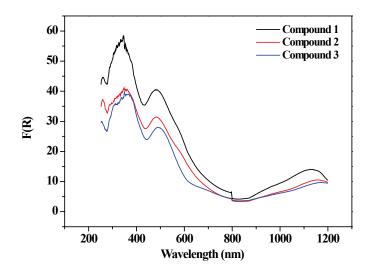




Figure S6. IR spectrum of compound 3.

3. Electronic Spectra Data

Figure S7. Electronic spectra of compounds 1–3 measured by diffuse reflectance. The reflectance data were treated with Kubelka-Munk correction.

4. Magnetic Model

The model of Cukiernick *et al.* [31] takes into account the existence of a zero field splitting (D), a weak antiferromagnetic coupling (zJ') between the dimetallic units, a temperature independent paramagnetism (TIP) and a paramagnetic impurity (P) of a mononuclear complex of Ru(III) with S = 1/2. The zero field splitting effect on the susceptibility can be quantified by considering the Hamiltonian $H_D = S \cdot D \cdot S$. The perturbation of a weak antiferromagnetic coupling over the zero field splitting system can be considered by using the molecular field approximation. Thus, for an S = 3/2 spin system the magnetic susceptibility can be expressed as:

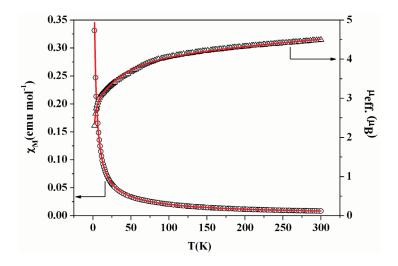
$$\chi' = \frac{\chi'_M}{1 - \chi'_M \left(\frac{2zJ'}{Ng^2\beta^2}\right)} \tag{1}$$

where χ_{M} ' includes the TIP

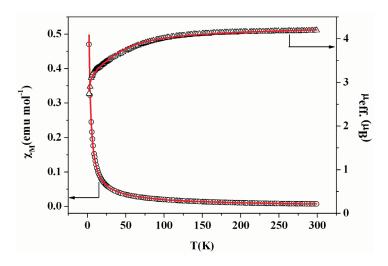
$$\chi'_{M} = \chi_{M} + TIP \tag{2}$$

and χ_M considers the zero-field splitting in the parallel and perpendicular component as

$$\chi_M = \frac{\chi_{\parallel} + 2\chi_{\perp}}{3} \tag{3}$$


$$\chi_{\parallel} = \frac{Ng^2 \beta^2}{kT} \left[\frac{1 + 9e^{-2D/kT}}{4\left(1 + e^{-2D/kT}\right)} \right]$$
 (4)

$$\chi_{\perp} = \frac{Ng^{2}\beta^{2}}{kT} \left[\frac{4 + \left(\frac{3kT}{D}\right) \left(1 - e^{-2D/kT}\right)}{4(1 + e^{-2D/kT})} \right]$$
 (5)


Finally, the consideration of the paramagnetic impurity (P) leads to the expression

$$\chi'_{mol} = (1 - P)\chi' + P \frac{N\beta^2 g^2}{4kT}$$
 (6)

Figure S8. Temperature dependence of the molar susceptibility χ_M (\circ) and $\mu_{eff.}$ (Δ) for complex 2; solid lines are the product of a least-squares fit to the model indicated in the text.

Figure S9. Temperature dependence of the molar susceptibility χ_M (\circ) and $\mu_{eff.}$ (Δ) for complex 3; solid lines are the product of a least-squares fit to the model indicated in the text.

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).