Synthesis of Ru2Br(μ-O2CC6H4–R)4 (R = o-Me, m-Me, p-Me) Using Microwave Activation: Structural and Magnetic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Aspects
2.2. Crystal Structures
Compound | Ru–Ru/Å | Ru–X/Å | Ru–X–Ru/° | θ angle/° |
---|---|---|---|---|
[Ru2Br(μ-O2CC6H4-o-CH3)4]n (1) | 2.2938(5) | 2.6910(4) | 116.36(2) | 48.89 |
9.52 | ||||
[Ru2Br(μ-O2CC6H4-m-CH3)4]n (2) | 8.26 | |||
2.2885(8) | 2.6815(7) | 116.56(2) | 4.35 | |
2.2893(8) | 2.7030(7) | 24.79 | ||
3.92 | ||||
[Ru2Br(μ-O2CC6H4-p-CH3)4]n (3) | 2.2898(7) | 2.6630(5) | 116.51(3) | 10.58 |
5.78 | ||||
[Ru2Cl(μ-O2CC6H4-o-CH3)4]n a | 2.2875(3) | 2.5590(4) | 121.45(3) | 51.13 |
11.47 | ||||
[Ru2Cl(μ-O2CC6H4-m-CH3)4]n a | 9.99 | |||
2.295(2) | 2.585(4) | 118.8(2) | 5.45 | |
2.283(3) | 2.565(4) | 28.13 | ||
3.47 | ||||
[Ru2Cl(μ-O2CC6H4-p-CH3)4]n a | 2.2906(5) | 2.5400(6) | 118.88(4) | 10.43 |
4.73 |
2.3. Spectroscopic Properties
Compound | σ(Axial ligand)→σ*(Ru2) | π(Ru–O, Ru2)→π*(Ru2) | δ(Ru2)→δ*(Ru2) |
---|---|---|---|
1 | 344 | 479 | 1128 |
2 | 349 | 486 | 1153 |
3 | 350 | 492 | 1168 |
2.4. Magnetic Properties
Compound | µeff. (rt, µB) | g | D (cm−1) | zJ (cm−1) | TIP (mL/mol) | P(%) | σ2 |
---|---|---|---|---|---|---|---|
1 | 4.39 | 2.12 | 49.22 | −2.60 | 1.42 × 10−3 | 0.01 | 1.45 × 10−5 |
2 | 4.50 | 2.09 | 51.77 | −0.73 | 1.81 × 10−3 | 1.02 × 10−4 | 1.99 × 10−5 |
3 | 4.20 | 2.13 | 51.09 | −2.76 | 3.68 × 10−4 | 0.64 | 3.33 × 10−5 |
3. Experimental Section
3.1. General Considerations
3.2. X-ray Data Collection and Structure Refinement
Crystal Data | 1 | 2 | 3 |
---|---|---|---|
Empirical formula | C32H28BrO8Ru2 | C32H28BrO8Ru2 | C32H28BrO8Ru2 |
Formula wt | 822.59 | 822.59 | 822.59 |
Diffractometer | Bruker, CCD area detector | Oxford, Xcalibur™A | Oxford, Xcalibur™A |
Scan method | Phi and Omega | Omega | Omega |
Radiation | MoKα(0.71073 Å) | MoK(0.71073 Å) | MoK(0.71073 Å) |
Crystal system | Monoclinic | Monoclinic | Monoclinic |
Space group | C2/c | P21/c | I2/a |
a/Å | 18.773(1) | 13.0936(4) | 12.9939(7) |
b/Å | 13.5213(9) | 11.1271(4) | 10.1996(5) |
c/Å | 13.1634(8) | 21.8306(7) | 24.830(2) |
α/° | 90 | 90 | 90 |
β/° | 109.159(1) | 98.071(3) | 94.623(5) |
γ/° | 90 | 90 | 90 |
V/Å3 | 3156.3(3) | 3149.1(2) | 3280.0(3) |
Z | 4 | 4 | 4 |
ρc/g/cm3 | 1.731 | 1.735 | 1.666 |
µ(Mo-Kα)/mm−1 | 2.272 | 2.277 | 2.186 |
F(000) | 1628 | 1628 | 1628 |
Crystal size/mm3 | 0.33 × 0.10 × 0.06 | 0.38 × 0.16 × 0.07 | 0.50 × 0.09 × 0.07 |
θ range/° | 1.89 to 26.00 | 3.37 to 26.00 | 3.43 to 26.00 |
Index ranges | −23, −14, −16 to 23, 16, 16 | −15, −13, −26 to 16, 13, 24 | −15, −12, −24 to 16, 12, 30 |
Reflections collected | 12858 | 15156 | 8036 |
Unique reflections | 3096 | 6181 | 3217 |
[Rint] | [Rint = 0.0440] | [Rint = 0.0399] | [Rint = 0.0454] |
Completeness to theta | 99.4% | 99.8% | 99.8% |
Absorption correction | Semi-empirical from equivalents | Semi-empirical from equivalents | Semi-empirical from equivalents |
Data/restraints/parameters | 3096/0/183 | 6181/0/364 | 3217/0/195 |
H-atom treatment | Calculated positions and refined HFIX | Calculated positions and refined HFIX | Calculated positions and refined HFIX |
Goodness-of-fit on F2 | 0.995 | 0.993 | 0.997 |
R1 (reflns obsd) [I > 2σ(I)] a | 0.0263 (2492) | 0.0445 (4452) | 0.0406(2290) |
wR2 (all data) b | 0.0572 | 0.1206 | 0.0851 |
Largest diff. peak and hole/e. Å−3 | 0.560 and −0.469 | 0.954 and −0.909 | 0.700 and −0.497 |
3.3. Synthesis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cotton, F.A.; Curtis, N.F.; Harris, C.B.; Johnson, B.F.G.; Lippard, S.J.; Mague, J.T.; Robinson, W.R.; Wood, J.S. Mononuclear and polynuclear chemistry of rhenium(III): Its pronounced homophilicity. Science 1964, 145, 1305–1307. [Google Scholar] [CrossRef]
- Cotton, F.A.; Walton, R.A. Multiple Bonds between Metal Atoms, 2nd ed.; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Cotton, F.A.; Murillo, C.; Walton, R.A. Multiple Bonds between Metal Atoms, 3rd ed.; Springer: New York, NY, USA, 2005. [Google Scholar]
- Aquino, M.A.S. Diruthenium and diosmiumtetracarboxylates: Synthesis, physical properties and applications. Coord. Chem. Rev. 1998, 170, 141–202. [Google Scholar] [CrossRef]
- Aquino, M.A.S. Recent developments in the synthesis and properties of dirutheniumtetracarboxylates. Coord. Chem. Rev. 2004, 248, 1025–1045. [Google Scholar] [CrossRef]
- Norman, J.G.; Renzoni, E.; Case, D.A. Electronic structure of Ru2(O2CR)4+ and Rh2(O2CR)4+ complexes. J. Am. Chem. Soc. 1979, 101, 5256–5267. [Google Scholar] [CrossRef]
- Messori, M.; Marzo, T.; Fernandes Sanches, R.N.; Hanif-Ur-Rehman; de Oliveira Silva, D.; Merlino, A. Unusual Structural Features in the Lysozyme Derivative of the Tetrakis(acetato)chloridodiruthenium(II,III) Complex. Angew. Chem. Int. Ed. 2014, 53, 6172–6175. [Google Scholar] [CrossRef]
- Miyake, J.A.; Benadiba, M.; Ribeiro, G.; Silva, D.D.; Colquhoun, A. Novel Ruthenium—Gamma-linolenic Acid Complex Inhibits C6 Rat Glioma Cell Proliferation in Vitro and in the Orthotopic C6 Model in Vivo after Osmotic Pump Infusion. Anticancer Res. 2014, 34, 1901–1911. [Google Scholar] [PubMed]
- Cummings, S.P.; Savchenko, J.; Fanwick, P.E.; Kharlamova, A.; Ren, T. Diruthenium Alkynyl Compounds with Phosphonate Capping Groups. Organometallics 2013, 32, 1129–1132. [Google Scholar] [CrossRef]
- Kuwahara, R.; Fujikawa, S.; Kuroiwa, K.; Kimizuka, N. Controlled Polymerization and Self-Assembly of Halogen-Bridged Diruthenium Complexes in Organic Media and Their Dielectrophoretic Alignment. J. Am. Chem. Soc. 2012, 134, 1192–1199. [Google Scholar] [CrossRef] [PubMed]
- Welte, L.; González-Prieto, R.; Olea, D.; Torres, M.R.; Priego, J.L.; Jiménez-Aparicio, R.; Gómez-Herrero, J.; Zamora, F. Time-Dependence Structures of Coordination Network Wires in Solution. ACS Nano 2008, 2, 2051–2056. [Google Scholar] [CrossRef] [PubMed]
- Olea, D.; González-Prieto, R.; Priego, J.L.; Barral, M.C.; de Pablo, P.J.; Torres, M.R.; Gómez-Herrero, J.; Jiménez-Aparicio, R.; Zamora, F. MMX polymer chains on surfaces. Chem. Commun. 2007, 1591–1593. [Google Scholar] [CrossRef]
- Blum, A.S.; Ren, T.; Parish, D.A.; Trammell, S.A.; Moore, M.H.; Kushmerick, J.G.; Xu, G.-L.; Deschamps, J.R.; Pollack, S.K.; Shashidhar, R. Ru2(ap)4(σ-oligo(phenyleneethynyl)) Molecular Wires: Synthesis and Electronic Characterization. J. Am. Chem. Soc. 2005, 127, 10010–10011. [Google Scholar] [PubMed]
- Johnson, K.D.; Powell, G.L. Microwave-assisted synthesis of dimolybdenumtetracarboxylates and a decanuclear osmium cluster. J. Organomet. Chem. 2008, 693, 1712–1715. [Google Scholar]
- Herrero, S.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Urbanos, F.A. First microwave synthesis of multiple metal-metal bond paddlewheel compounds. Green Chem. 2010, 12, 965–967. [Google Scholar] [CrossRef]
- Herrero, S.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Saguar, S.; Urbanos, F.A. Microwave methods for the synthesis of paddlewheel diruthenium compounds with N,N-donor ligands. Green Chem. 2011, 13, 1885–1890. [Google Scholar] [CrossRef]
- Delgado, P.; González-Prieto, R.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Torres, M.R. Comparative study of different methods for the preparation of tetraamidato and tetracarboxylatodiruthenium compounds. Structural and magnetic characterization. Dalton Trans. 2012, 41, 11866–11874. [Google Scholar] [CrossRef]
- Delgado-Martínez, P.; Gómez-García, C.J.; González-Prieto, R.; Jiménez-Aparicio, R.; Priego, J.L.; Torres, M.R. Structural, magnetic and electrical properties of one-dimensional tetraamidatodiruthenium compounds. 2014, 43, 3227–3237. [Google Scholar]
- Cortijo, M.; Herrero, S.; Jiménez-Aparicio, R.; Matesanz, E. Modulation of the Magnetic Properties of Two-Dimensional Compounds [NiX2(N–N)] by Tailoring Their Crystal Structure. Inorg. Chem. 2013, 52, 7087–7093. [Google Scholar] [CrossRef] [PubMed]
- Cortijo, M.; Herrero, S.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Torralvo, M.J.; Torroba, J. Hybrid Polyfunctional Systems Based on Nickel(II) Isonicotinate. Eur. J. Inorg. Chem. 2013, 2580–2590. [Google Scholar] [CrossRef]
- Cortijo, M.; Herrero, S.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Torroba, J. Tuning of Adsorption and Magnetic Properties in a Series of Self-Templated Isostructural Ni(II) Metal-Organic Frameworks. Cryst. Growth Des. 2014, 14, 716–722. [Google Scholar] [CrossRef]
- Cortijo, M.; Herrero, S.; Jerez, B.; Jiménez-Aparicio, R.; Perles, J.; Priego, J.L.; Torroba, J.; Tortajada, J. One-Dimensional [Ni(O2CR)2(N–N)x] Polymers: Structural, Magnetic, and Density Functional Theory Studies. ChemPlusChem 2014, 79, 951–961. [Google Scholar] [CrossRef]
- Kimura, T.; Sakurai, T.; Shima, M.; Togano, T.; Mukaida, M.; Nomura, T. Structure of Tetra-µ-formatodiruthenium Bromide. Bull. Chem. Soc. Jpn. 1982, 55, 3927–3928. [Google Scholar] [CrossRef]
- Barral, M.C.; González-Prieto, R.; Jiménez-Aparicio, R.; Priego, J.L.; Torres, M.R.; Urbanos, F.A. Synthesis, Properties, and Structural Characterization of Bromo- and Iodotetracarboxylatodiruthenium(II,III) Compounds. Eur. J. Inorg. Chem. 2004, 4491–4501. [Google Scholar] [CrossRef]
- Miskowski, V.M.; Hopkins, M.D.; Winkler, J.R.; Gray, H.B. Multiple Metal–Metal Bonds. In Inorganic Electronic Structure and Spectroscopy, Volume II: Applications and Case Studies; Solomon, E.I., Lever, A.B.P., Eds.; John Wiley and Sons: New York, NY, USA, 1999; pp. 343–402. [Google Scholar]
- Miskowski, V.M.; Gray, H.B. Electronic spectra of Ru2(carboxylate)4+ complexes. Higher energy electronic excited states. Inorg. Chem. 1988, 27, 2501–2506. [Google Scholar]
- Miskowski, V.M.; Loehr, T.M.; Gray, H.B. Electronic and vibrational spectra of Ru2(carboxylate)4+ complexes. Characterization of a high-spin metal-metal ground state. Inorg. Chem. 1987, 26, 1098–1108. [Google Scholar]
- Clark, R.J.H.; Franks, M.L. Resonance Raman spectra of chlorotetra-acetato- and chlorotetrabutyrato-diruthenium. Dalton Trans. 1976, 1825–1828. [Google Scholar] [CrossRef]
- Clark, R.J.H.; Ferris, L.T.H. Resonance Raman, excitation profile and electronic structural studies of diruthenium tetracarboxylate complexes. Inorg. Chem. 1981, 20, 2759–2766. [Google Scholar] [CrossRef]
- Castro, A.M.; Roitberg, A.E.; Cukiernik, F.D. Theoretical and Experimental Studies of Diruthenium Tetracarboxylates Structure, Spectroscopy, and Electrochemistry. Inorg. Chem. 2008, 47, 4682–4690. [Google Scholar] [CrossRef] [PubMed]
- Cukiernik, F.D.; Luneau, D.; Marchon, J.-C.; Maldivi, P. Mixed-Valent Diruthenium Long-Chain Carboxylates. 2. Magnetic Properties. 2. Magnetic Properties. Inorg. Chem. 1998, 37, 3698–3704. [Google Scholar] [CrossRef]
- Mikuriya, M.; Yoshioka, D.; Handa, M. Magnetic interactions in one-, two-, and three-dimensional assemblies of dinuclear ruthenium carboxylates. Coord. Chem. Rev. 2006, 250, 2194–2211. [Google Scholar] [CrossRef]
- Estiú, G.; Cukiernik, F.D.; Maldivi, P.; Poizat, O. Electronic, Magnetic, and Spectroscopic Properties of Binuclear DirutheniumTetracarboxylates: A Theoretical and Experimental Study. Inorg. Chem. 1999, 38, 3030–3039. [Google Scholar]
- Mitchell, R.W.; Spencer, A.; Wilkinson, G. Carboxylato-triphenylphosphine Complexes of Ruthenium, Cationic Triphenylphosphine Complexes derived from them, and their Behaviour as Homogeneous Hydrogenation Catalysts for Alkenes. Dalton Trans. 1973, 846–854. [Google Scholar] [CrossRef]
- Mukaida, M.; Nomura, T.; Ishimori, T. Synthesis of Formato-, Acetato-, Benzoato-, and Chlorosubstituted Acetatoruthenium Complexes, and their Properties. Bull. Chem. Soc. Jpn. 1972, 45, 2143–2147. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr. Sect. A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- The Cambridge Crystallographic Data Centre. Available online: www.ccdc.cam.ac.uk/data_request/ci (accessed on 3 July 2014).
© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).
Share and Cite
Delgado-Martínez, P.; Elvira-Bravo, A.; González-Prieto, R.; Priego, J.L.; Jimenez-Aparicio, R.; Torres, M.R. Synthesis of Ru2Br(μ-O2CC6H4–R)4 (R = o-Me, m-Me, p-Me) Using Microwave Activation: Structural and Magnetic Properties. Inorganics 2014, 2, 524-536. https://doi.org/10.3390/inorganics2030524
Delgado-Martínez P, Elvira-Bravo A, González-Prieto R, Priego JL, Jimenez-Aparicio R, Torres MR. Synthesis of Ru2Br(μ-O2CC6H4–R)4 (R = o-Me, m-Me, p-Me) Using Microwave Activation: Structural and Magnetic Properties. Inorganics. 2014; 2(3):524-536. https://doi.org/10.3390/inorganics2030524
Chicago/Turabian StyleDelgado-Martínez, Patricia, Alejandra Elvira-Bravo, Rodrigo González-Prieto, José L. Priego, Reyes Jimenez-Aparicio, and M. Rosario Torres. 2014. "Synthesis of Ru2Br(μ-O2CC6H4–R)4 (R = o-Me, m-Me, p-Me) Using Microwave Activation: Structural and Magnetic Properties" Inorganics 2, no. 3: 524-536. https://doi.org/10.3390/inorganics2030524
APA StyleDelgado-Martínez, P., Elvira-Bravo, A., González-Prieto, R., Priego, J. L., Jimenez-Aparicio, R., & Torres, M. R. (2014). Synthesis of Ru2Br(μ-O2CC6H4–R)4 (R = o-Me, m-Me, p-Me) Using Microwave Activation: Structural and Magnetic Properties. Inorganics, 2(3), 524-536. https://doi.org/10.3390/inorganics2030524