Special Issue "Multi-Hazard Approach to Infrastructures Risk Reduction"

A special issue of Infrastructures (ISSN 2412-3811).

Deadline for manuscript submissions: 31 December 2020.

Special Issue Editors

Dr. Mario Lucio Puppio
Guest Editor
Department of Energy, Systems, Territory and Constructions Engineering, University of Pisa, Largo Lazzarino 1, Pisa, 56126, Italy
Interests: multi-hazard; risk reduction; cultural heritage, urban walls, short span bridges
Dr. Fadi Hage Chehade

Guest Editor
Department of Civil Engineering, Faculty of Technology and director of Modeling Center, Doctoral School of Science and Technology/Lebanese University, BP 5, Hadath, Beirut Lebanon
Interests: soil structure interaction of urban problems, numerical modeling, dynamic, coupling problems, materials, stability or risk reduction analysis
Dr. Flavio Stochino
Guest Editor
Department of Civil Environmental Engineering and Architecture, University of Cagliari, 09123 Cagliari, Italy
Interests: Concrete; Fire; Blast; Impact; Structures; Recycled Concrete; Masonry; Structural Dynamics; Computational Mechanics
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

Infrastructures represent the base components of the interaction between social, human and natural environment. Examples include bridges, industrial plants, dams, levees, retaining wall systems and coastal reinforcements. Their proper construction and maintenance contribute to a sustainable and correct development of human society. Only the maintenance cost has a relevant economic impact, and unexpected loss has an unacceptable implication to the community. Evidence of structural failure in recent years, due in part to climate change, focuses the attention of communities and stakeholders on the need for a more sustainable and wider approach to risk reduction. Moreover, extreme anthropic events, like fires, blasts or terroristic attacks, together with the effects of aging in infrastructures, should be taken into account. Often, a strictly code-based approach is not sufficient to provide an effective risk mitigation strategy.

The complexity of the current natural and economic systems shows the need for researchers, engineers and decision makers to share knowledge, expertise and cooperate in order to respond to a wide range of possibilities. The use of the latest technology, developments and models in various fields leads to more sustainable behaviour of infrastructures during their performance. Past infrastructure failures show the importance of a multi-hazard approach to prevent such events. A typical example is a seemingly less significant fact that had serious consequences in terms of human, natural and economic losses. For this reason, infrastructures should be characterized by robustness, the ability to avoid disproportionate collapse due to an initial damage and by resilience, the ability to adapt to and recover from the effects of changing external conditions. Designers have to consider the concept of smart infrastructures.

The focus of this Special Issue is on a multi-level, multi-disciplinary and multi-hazard approach for risk reduction of infrastructures. The final goal is to consider the complexity of the actual human system with a rigorous, multi-level, physically based method that yields a multidisciplinary cultural contributions from several research fields. Geo-hazards, blasts, fires, hurricanes, earthquakes, aging and all-natural hazards, joined together or taken individually, can be considered in the risk analysis, especially highlighting the interactions of these and their consequences. Cause-and-effect investigations and research on unexpected failure scenarios have important weights in addressing these analyses.

New, original research, review papers and technical papers discussing the design of new infrastructures that deal with risk mitigation are welcome. Durability, simplicity, scientific soundness, robustness, strength, effectiveness, sustainability and cost effectiveness in terms of global investigation of the proposals should inspire the essays/works. In this way, this Special Issue would be a useful guide and reference for stakeholders, decision makers, researchers, students and engineers who deal with infrastructure risk reduction for the wellbeing of the society.

Dr. Mario Lucio Puppio
Dr. Fadi Hage Chehade
Dr. Flavio Stochino
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Infrastructures is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.


  • resilient infrastructures
  • multi-hazard
  • multi-disciplinary approach
  • risk reduction
  • fire protection, flood protection
  • blast protection
  • aging effect on infrastructures

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:


Open AccessArticle
Seismic Assessment of Six Typologies of Existing RC Bridges
Infrastructures 2020, 5(6), 52; https://doi.org/10.3390/infrastructures5060052 - 26 Jun 2020
Over the last few decades, the attention on the safety of existing reinforced concrete (RC) structures has significantly increased. RC bridges, in particular, are highly relevant for strategic importance. In the Italian context, several of these bridges were built around 1960, when engineering [...] Read more.
Over the last few decades, the attention on the safety of existing reinforced concrete (RC) structures has significantly increased. RC bridges, in particular, are highly relevant for strategic importance. In the Italian context, several of these bridges were built around 1960, when engineering practice commonly ignored or underestimated the presence of seismic actions. Therefore, it is fundamental to quantify as accurately as possible their seismic safety level with state-of-the-art analysis techniques. In this paper, an efficient procedure based on the multi-modal pushover analysis approach is proposed for the risk evaluation of several bridges of the Italian highway network. This procedure, tailored for portfolio level assessment, takes into account the non-linear behavior and the complex dynamic response this type of structure with limited computational effort. Three fundamental aspects are defined for the structural modelling of bridges, i.e., materials’ constitutive law, finite element type and nonlinear hinge models. Flexural and shear nonlinearities of piers are included to account for ductile and brittle damage potential. The standardized procedure guarantees consistent comparisons among different bridges of the same network in the form of risk indexes. Full article
(This article belongs to the Special Issue Multi-Hazard Approach to Infrastructures Risk Reduction)
Show Figures

Figure 1

Back to TopTop