ijms-logo

Journal Browser

Journal Browser

Phytohormones: Important Participators in Plant Growth and Development: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (30 July 2024) | Viewed by 10595

Special Issue Editor


E-Mail
Guest Editor

Special Issue Information

Dear Colleagues,

Phytohormones are involved in the regulation of numerous processes in plants. However, their participation in the control of plant growth and development has attracted the most attention. Recently, wonderful discoveries have been made regarding the mechanisms of hormonal synthesis, perception of hormonal signals, and participants involved in transduction and implementation of their signals at the levels of gene expression and hormonal crosstalk with other regulatory systems. Nevertheless, a lot of questions concerning the participation of plant hormones in the control of growth and development remain unanswered. Therefore, we invite researchers to contribute to this Special Issue, which will present the latest research findings reported in original experimental papers, opinions, and reviews regarding hormonal control of growth and development on the cell and organ levels during germination, cell division, extension and differentiation, root and shoot branching, flowering, and fruit ripening. The list of regulators called phytohormones was expanded by adding brassinosteroids, jasmonates, and salicylic acid to “classical” hormones: auxins, cytokinins, gibberellins, ethylene, and abscisic acid. Although jasmonates and salicylic acid are better known as “stress hormones”, there are reports on their capacity to influence plants’ growth, and publications on this topic are welcome.

Prof. Dr. Guzel Kudoyarova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • growth and development
  • brassinosteroids
  • jasmonates
  • salicylic
  • auxins
  • cytokinins
  • gibberellins
  • ethylene
  • abscisic acid
  • hormonal cross-talk
  • transcription factors
  • secondary messengers (ROS, Ca, NO)

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

23 pages, 3978 KiB  
Article
Synthesis, Biological Activity, and Molecular-Docking Studies of New Brassinosteroid Analogs
by María Nuñez, Yaowei Wang, Eugenia Russinova, Ana Estévez-Braun, Angel Amesty, Andrés F. Olea, Marco Mellado, Katy Díaz and Luis Espinoza Catalán
Int. J. Mol. Sci. 2024, 25(18), 10158; https://doi.org/10.3390/ijms251810158 - 21 Sep 2024
Viewed by 1497
Abstract
Much work has been dedicated to the quest to determine the structure–activity relationship in synthetic brassinosteroid (BR) analogs. Recently, it has been reported that analogs with phenyl or benzoate groups in the alkyl chain present activities comparable to those shown by natural BRs, [...] Read more.
Much work has been dedicated to the quest to determine the structure–activity relationship in synthetic brassinosteroid (BR) analogs. Recently, it has been reported that analogs with phenyl or benzoate groups in the alkyl chain present activities comparable to those shown by natural BRs, depending on the nature of the substituent in the aromatic ring. However, as it is well known that the activity depends on the structure of the whole molecule, in this work, we have synthesized a series of compounds with the same substituted benzoate in the alkyl chain and a hydroxyl group at C3. The main goal was to compare the activities with analogs with -OH at C2 and C3. Additionally, a molecular-docking study and molecular dynamics simulations were performed to establish a correlation between the experimental and theoretical results. The synthesis of eight new BR analogs was described. All the analogs were fully characterized by spectroscopical methods. The bioactivity of these analogs was assessed using the rice lamina inclination test (RLIT) and the inhibition of the root and hypocotyl elongation of Arabidopsis thaliana. The results of the RLIT indicate that at the lowest tested concentration (1 × 10−8 M), in the BR analogs in which the aromatic ring was substituted at the para position with methoxy, the I and CN substituents were more active than brassinolide (50–72%) and 2–3 times more active than those analogs in which the substituent group was F, Cl or Br atoms. However, at the highest concentrations, brassinolide was the most active compound, and the structure–activity relationship changed. On the other hand, the results of the A. thaliana root sensitivity assay show that brassinolide and the analogs with I and CN as substituents on the benzoyl group were the most active compounds. These results are in line with those obtained via the RLIT. A comparison of these results with those obtained for similar analogs that had a hydroxyl group at C2 indicates the importance of considering the whole structure. The molecular-docking results indicate that all the analogs adopted a brassinolide-like orientation, while the stabilizing effect of the benzoate group on the interactions with the receptor complex provided energy binding values ranging between −10.17 and −13.17 kcal mol−1, where the analog with a nitrile group was the compound that achieved better contact with the amino acids present in the active site. Full article
Show Figures

Figure 1

13 pages, 3538 KiB  
Article
The Long-Distance Transport of Jasmonates in Salt-Treated Pea Plants and Involvement of Lipid Transfer Proteins in the Process
by Gulnara Vafina, Guzel Akhiyarova, Alla Korobova, Ekaterina I. Finkina, Dmitry Veselov, Tatiana V. Ovchinnikova and Guzel Kudoyarova
Int. J. Mol. Sci. 2024, 25(13), 7486; https://doi.org/10.3390/ijms25137486 - 8 Jul 2024
Viewed by 1210
Abstract
The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants’ adaptation to salinity. However, to [...] Read more.
The adaption of plants to stressful environments depends on long-distance responses in plant organs, which themselves are remote from sites of perception of external stimuli. Jasmonic acid (JA) and its derivatives are known to be involved in plants’ adaptation to salinity. However, to our knowledge, the transport of JAs from roots to shoots has not been studied in relation to the responses of shoots to root salt treatment. We detected a salt-induced increase in the content of JAs in the roots, xylem sap, and leaves of pea plants related to changes in transpiration. Similarities between the localization of JA and lipid transfer proteins (LTPs) around vascular tissues were detected with immunohistochemistry, while immunoblotting revealed the presence of LTPs in the xylem sap of pea plants and its increase with salinity. Furthermore, we compared the effects of exogenous MeJA and salt treatment on the accumulation of JAs in leaves and their impact on transpiration. Our results indicate that salt-induced changes in JA concentrations in roots and xylem sap are the source of accumulation of these hormones in leaves leading to associated changes in transpiration. Furthermore, they suggest the possible involvement of LTPs in the loading/unloading of JAs into/from the xylem and its xylem transport. Full article
Show Figures

Figure 1

19 pages, 5310 KiB  
Article
Integrative Analysis of Metabolome and Transcriptome of Carotenoid Biosynthesis Reveals the Mechanism of Fruit Color Change in Tomato (Solanum lycopersicum)
by Jiahui Hu, Juan Wang, Tayeb Muhammad, Tao Yang, Ning Li, Haitao Yang, Qinghui Yu and Baike Wang
Int. J. Mol. Sci. 2024, 25(12), 6493; https://doi.org/10.3390/ijms25126493 - 12 Jun 2024
Cited by 4 | Viewed by 1562
Abstract
Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) [...] Read more.
Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, β- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development. Full article
Show Figures

Figure 1

9 pages, 2567 KiB  
Communication
New Hybrid Ethylenediurea (EDU) Derivatives and Their Phytoactivity
by Maxim S. Oshchepkov, Leonid V. Kovalenko, Antonida V. Kalistratova, Sergey V. Tkachenko, Olga N. Gorunova, Nataliya A. Bystrova and Konstantin A. Kochetkov
Int. J. Mol. Sci. 2024, 25(6), 3335; https://doi.org/10.3390/ijms25063335 - 15 Mar 2024
Cited by 2 | Viewed by 1119
Abstract
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), [...] Read more.
Natural and synthetic phytohormones are widely used in agriculture. The synthetic cytokinin ethylenediurea (EDU) induces protection in plants against ozone phytotoxicity. In our study, new hybrid derivatives of EDU were synthesized and tested for phytoactivity. The germination potential (Gp), germination of seeds (G), and relative water content in leaves (RWC), characterizing the drought resistance of plants, were determined. The results of laboratory studies showed that EDU and its hybrid derivatives have a positive effect on root length, the growth and development of shoots, as well as the ability of plants to tolerate stress caused by a lack of water. Full article
Show Figures

Graphical abstract

19 pages, 2609 KiB  
Article
The Effect of Ethephon on Ethylene and Chlorophyll in Zoysia japonica Leaves
by Jiahang Zhang, Lijing Li, Zhiwei Zhang, Liebao Han and Lixin Xu
Int. J. Mol. Sci. 2024, 25(3), 1663; https://doi.org/10.3390/ijms25031663 - 29 Jan 2024
Cited by 4 | Viewed by 1962
Abstract
Zoysia japonica (Zoysia japonica Steud.) is a kind of warm-season turfgrass with many excellent characteristics. However, the shorter green period and longer dormancy caused by cold stress in late autumn and winter are the most limiting factors affecting its application. A previous [...] Read more.
Zoysia japonica (Zoysia japonica Steud.) is a kind of warm-season turfgrass with many excellent characteristics. However, the shorter green period and longer dormancy caused by cold stress in late autumn and winter are the most limiting factors affecting its application. A previous transcriptome analysis revealed that ethephon regulated genes in chlorophyll metabolism in Zoysia japonica under cold stress. Further experimental data are necessary to understand the effect and underlying mechanism of ethephon in regulating the cold tolerance of Zoysia japonica. The aim of this study was to evaluate the effects of ethephon by measuring the enzyme activity, intermediates content, and gene expression related to ethylene biosynthesis, signaling, and chlorophyll metabolism. In addition, the ethylene production rate, chlorophyll content, and chlorophyll a/b ratio were analyzed. The results showed that ethephon application in a proper concentration inhibited endogenous ethylene biosynthesis, but eventually promoted the ethylene production rate due to its ethylene-releasing nature. Ethephon could promote chlorophyll content and improve plant growth in Zoysia japonica under cold-stressed conditions. In conclusion, ethephon plays a positive role in releasing ethylene and maintaining the chlorophyll content in Zoysia japonica both under non-stressed and cold-stressed conditions. Full article
Show Figures

Figure 1

Other

Jump to: Research

22 pages, 5510 KiB  
Perspective
A Model of the Full-Length Cytokinin Receptor: New Insights and Prospects
by Dmitry V. Arkhipov, Sergey N. Lomin and Georgy A. Romanov
Int. J. Mol. Sci. 2024, 25(1), 73; https://doi.org/10.3390/ijms25010073 - 20 Dec 2023
Cited by 4 | Viewed by 2052
Abstract
Cytokinins (CK) are one of the most important classes of phytohormones that regulate a wide range of processes in plants. A CK receptor, a sensor hybrid histidine kinase, was discovered more than 20 years ago, but the structural basis for its signaling is [...] Read more.
Cytokinins (CK) are one of the most important classes of phytohormones that regulate a wide range of processes in plants. A CK receptor, a sensor hybrid histidine kinase, was discovered more than 20 years ago, but the structural basis for its signaling is still a challenge for plant biologists. To date, only two fragments of the CK receptor structure, the sensory module and the receiver domain, were experimentally resolved. Some other regions were built up by molecular modeling based on structures of proteins homologous to CK receptors. However, in the long term, these data have proven insufficient for solving the structure of the full-sized CK receptor. The functional unit of CK receptor is the receptor dimer. In this article, a molecular structure of the dimeric form of the full-length CK receptor based on AlphaFold Multimer and ColabFold modeling is presented for the first time. Structural changes of the receptor upon interacting with phosphotransfer protein are visualized. According to mathematical simulation and available data, both types of dimeric receptor complexes with hormones, either half- or fully liganded, appear to be active in triggering signals. In addition, the prospects of using this and similar models to address remaining fundamental problems of CK signaling were outlined. Full article
Show Figures

Figure 1

Back to TopTop