ijms-logo

Journal Browser

Journal Browser

Advanced Electrode and Electrolyte Materials: Molecular Scale Design, Synthesis, Mechanisms and Applications

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Materials Science".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 2089

Special Issue Editor


E-Mail Website
Guest Editor
Institut de Minéralogie, de Physique des Matériaux et Cosmologie (IMPMC), Sorbonne Université, UMR-CNRS 7590, 4 Place Jussieu, 75752 Paris, France
Interests: energy storage and conversion; solid state ionics; nanomaterials; nanoionics; lithium batteries; energy materials; insertion reactions; vibrational spectroscopy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Rechargeable batteries are one of the most important and efficient energy storage devices. High-performance battery technology is a key enabling factor for deep decarbonization via large-scale application in electric vehicles and stationary storage. Materials, including electrodes and electrolytes are essential and performance-determining components for rechargeable batteries such as lithium-ion and all-solid-state lithium metal batteries.

In these batteries, electrodes and electrolytes play crucial roles in determining energy density, lifetime, power capability, safety, and cost. Special attentions are currently devoted to designing and synthesizing materials to achieve stable electrochemical performance by introducing various functions derived from their special morphology and structure, proper particle dimension and composite formation, etc.

The aim of this Special Issue, entitled “Advanced Electrode and Electrolyte Materials: Molecular Scale Design, Synthesis, Mechanisms and Applications”, is to present a collection of original and innovative papers (original research articles, short communications, and reviews) describing recent trends and developments in the synthesis, the structure at the molecular level, physicochemical characterization, and mechanistic studies of electrode and electrolyte materials for application in rechargeable batteries including lithium-ion and all-solid-state lithium metal batteries.

Prof. Dr. Christian Julien
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cathode
  • anode
  • electrolyte
  • synthesis
  • electrochemistry
  • rechargeable batteries
  • lithium-ion batteries
  • all-solid-state lithium metal batteries

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

17 pages, 1320 KiB  
Article
Electrochemically Reduced Graphene Oxide Covalently Bound Sensor for Paracetamol Voltammetric Determination
by Amaya Paz de la vega, Fabiana Liendo, Bryan Pichún, Johisner Penagos, Rodrigo Segura and María Jesús Aguirre
Int. J. Mol. Sci. 2025, 26(9), 4267; https://doi.org/10.3390/ijms26094267 - 30 Apr 2025
Abstract
Designing a highly sensitive and efficient functionalized electrode for precise drug analysis remains a significant challenge. In this work, an electrochemical sensor based on a glassy carbon electrode (GCE) modified with phenyl diazonium salts (ph) and electrochemically reduced graphene oxide (ERGO), labeled GCE/ph/ERGO, [...] Read more.
Designing a highly sensitive and efficient functionalized electrode for precise drug analysis remains a significant challenge. In this work, an electrochemical sensor based on a glassy carbon electrode (GCE) modified with phenyl diazonium salts (ph) and electrochemically reduced graphene oxide (ERGO), labeled GCE/ph/ERGO, was developed for the detection of paracetamol (PAR) in pharmaceutical matrices using square wave voltammetry (SWV). The modified electrode was characterized by scanning electron microscopy (SEM), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). Compared to the bare GCE, the GCE/ph/ERGO sensor demonstrated significantly improved conductivity and anodic current peak for PAR over two orders of magnitude higher, indicating a substantial enhancement in electrochemical performance. Under optimized conditions, the developed sensor exhibited a low detection limit of 18.2 nM and a quantification limit of 60.6 nM. Precision studies yielded relative standard deviations (RSDs) below 8%. The sensor demonstrated excellent selectivity in the presence of common pharmaceutical excipients and high accuracy in the analysis of generic pharmaceutical formulations, with results comparable to those obtained by the HPLC technique. These findings confirm the sensor’s reliability, stability, robustness, and suitability for routine analysis of PAR in pharmaceutical samples. Full article
Show Figures

Figure 1

30 pages, 14478 KiB  
Article
Integrated Lithium-Rich yLi2MnO3∙(1-y)LiNi1/3Co1/3Mn1/3O2 Layered Cathode Nanomaterials for Lithium-Ion Batteries
by Ashraf E. Abdel-Ghany, Rasha S. El-Tawil, Ahmed M. Hashem, Alain Mauger and Christian M. Julien
Int. J. Mol. Sci. 2025, 26(3), 1346; https://doi.org/10.3390/ijms26031346 - 5 Feb 2025
Viewed by 661
Abstract
Integrated Li- and Mn-rich layered cathodes yLi2MnO3∙(1-y)LiMO2 (M = Mn, Co, and Ni) have shown their ability to deliver specific capacities close to 300 mAh g−1, but their significant drawbacks [...] Read more.
Integrated Li- and Mn-rich layered cathodes yLi2MnO3∙(1-y)LiMO2 (M = Mn, Co, and Ni) have shown their ability to deliver specific capacities close to 300 mAh g−1, but their significant drawbacks are capacity fading and voltage decay during cycling. In this study, new stoichiometric high-voltage Li-rich oxides with y = 0.0, 0.3, and 0.5 are synthesized in identical conditions using a sol–gel method. These compositions were analyzed to determine their optimal configuration and to understand their extraordinary behavior. Their nanostructural properties were investigated using XRD and Raman spectroscopy, while the morphology and grain-size distribution of the samples were characterized by BET, SEM and HRTEM analyses. The electrochemical performances of the integrated Li- and Mn-rich compounds were evaluated through galvanostatic cycling and electrochemical impedance spectroscopy. The best cathode material 0.5Li2MnO3∙0.5LiNi1/3Co1/3Mn1/3O2 had a capacity retention of 83.6% after 100 cycles in the potential range 2.0–4.8 V vs. Li+/Li. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 5048 KiB  
Review
Recent Advances in Ex Situ Surface Treatments for Lithium Metal Negative Electrodes in Secondary Batteries
by Paul Maldonado Nogales, Sangyup Lee, Seunga Yang and Soon-Ki Jeong
Int. J. Mol. Sci. 2025, 26(7), 3446; https://doi.org/10.3390/ijms26073446 - 7 Apr 2025
Viewed by 864
Abstract
Lithium metal negative electrodes are pivotal for next-generation batteries because of their exceptionally high theoretical capacity and low redox potential. However, their commercialization is constrained by critical challenges, including dendrite formation, volumetric instability, and the fragility of the solid electrolyte interphase (SEI). In [...] Read more.
Lithium metal negative electrodes are pivotal for next-generation batteries because of their exceptionally high theoretical capacity and low redox potential. However, their commercialization is constrained by critical challenges, including dendrite formation, volumetric instability, and the fragility of the solid electrolyte interphase (SEI). In this context, this review highlights the transformative potential of ex situ surface treatments, which stabilize lithium metal electrodes before cell assembly. Key advancements include inorganic and polymer-based coatings that enhance SEI stability and mitigate dendrite growth, three-dimensional host architectures that manage volumetric changes and improve lithium diffusion, and liquid-phase chemical modifications that enable uniform lithium deposition. These strategies are critically evaluated for their scalability, environmental sustainability, and long-term stability, paying particular attention to cost, complexity, and ecological considerations. In addition, their potential contributions to the development of advanced battery technologies are discussed, providing insights into pathways toward enhanced commercial viability. By synthesizing cutting-edge research and identifying unresolved challenges, this review provides a comprehensive roadmap for advancing safer, more efficient, and more durable lithium metal batteries, thereby bridging the gap between laboratory research and commercial adoption. Full article
Show Figures

Figure 1

Back to TopTop