ijms-logo

Journal Browser

Journal Browser

COVID-19: Molecular Research and Novel Therapy

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 461

Special Issue Editor


E-Mail Website
Guest Editor
Stefan S. Nicolau Institute of Virology, Bucharest, Romania
Interests: immunology and immune response during viral infections; oncology; immunotherapy; intracellular signalling; targeted therapy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Since the COVID-19 pandemic, significant progress has been made in understanding the virus's pathogenic mechanisms, host–pathogen interactions, and the immunological responses that impact the disease’s outcome. These discoveries have boosted the development of antiviral drugs, vaccines, and diagnostic tools, offering improved possibilities in the fight against this global pandemic.

This Special Issue focuses on "COVID-19: Molecular Research and Novel Therapy", and welcomes original research articles, reviews, and short communications on the molecular mechanisms of SARS-CoV-2 infection, host immune responses, including innate and adaptive immunity, inflammation and immune evasion, development of antiviral agents, immunotherapies, and vaccines.

We look forward to receiving valuable contributions from the researchers all around the world, hoping to reveal cutting-edge knowledge that will contribute to the global effort to understand the pathogenesis of SARS-CoV-2, to reveal advancements in therapeutic interventions, and, at the same time, help the efforts to prevent and respond to other pandemics.

Dr. Mihaela Chivu-Economescu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • SARS-CoV-2
  • virus-host interaction
  • immune response
  • antiviral agents
  • vaccines

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 3425 KiB  
Article
SARS-CoV-2 ORF7a Protein Impedes Type I Interferon-Activated JAK/STAT Signaling by Interacting with HNRNPA2B1
by Yujie Wen, Chaochao Li, Tian Tang, Chao Luo, Shan Lu, Na Lyu, Yongxi Li and Rong Wang
Int. J. Mol. Sci. 2025, 26(12), 5536; https://doi.org/10.3390/ijms26125536 - 10 Jun 2025
Viewed by 198
Abstract
The pandemic of Coronavirus Disease 2019 has triggered a worldwide public health emergency. Its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed multiple strategies for effectively evading the host immune defenses, including inhibition of interferon (IFN) signaling. Several viral proteins of [...] Read more.
The pandemic of Coronavirus Disease 2019 has triggered a worldwide public health emergency. Its pathogen, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has developed multiple strategies for effectively evading the host immune defenses, including inhibition of interferon (IFN) signaling. Several viral proteins of SARS-CoV-2 are believed to interfere with IFN signaling. In this study, we found that the SARS-CoV-2 accessory protein ORF7a considerably impaired IFN-activated Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling via suppression of the nuclear translocation of IFN-stimulated gene factor 3 (ISGF3) and the activation of STAT2. ORF7a dampened STAT2 activation without altering the expression and phosphorylation of Janus kinases (JAKs). A co-immunoprecipitation (co-IP) assay was performed to gather ORF7a protein, but it failed to precipitate STAT2. Interestingly, mass spectrometry and immunoblotting analyses of the ORF7a co-IP product revealed that ORF7a interacted with an RNA-binding protein, heterogeneous nuclear ribonucleoprotein A2B1 (HNRNPA2B1), and HNRNPA2B1 was related to the inhibitory effect of ORF7a on STAT2 phosphorylation. Moreover, examination of ORF7a deletion constructs revealed that the C-terminal region of ORF7a (amino acids 96 to 122) is crucial for suppressing IFN-induced JAK/STAT signaling activation. In conclusion, we discovered that SARS-CoV-2 ORF7a antagonizes type I IFN-activated JAK/STAT signaling by interacting with HNRNPA2B1, and the C-terminal region of ORF7a is responsible for its inhibitory effect. Full article
(This article belongs to the Special Issue COVID-19: Molecular Research and Novel Therapy)
Show Figures

Figure 1

Back to TopTop