ijms-logo

Journal Browser

Journal Browser

The Function of Glial Cells in the Nervous System: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Neurobiology".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 252

Special Issue Editor


E-Mail Website
Guest Editor
Brain Health Imaging Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10044, USA
Interests: astroglial cells; glial–neuronal interaction in synapses; biomarkers; S100B; Alzheimer’s disease; cognition
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is a continuation of our previous Special Issue on “The Function of Glial Cells in the Nervous System”.

In nervous system homeostasis, glial cells, or neuroglia, play a collective role. Essentially all aspects of the nervous system's formation and function are orchestrated by the diverse and dynamic functions of glial cells. These include forming synapses, regulating synaptic transmission and plasticity, maintaining redox balance, maintaining ion and water homeostasis, establishing the blood–brain barrier, controlling toxicity in the extracellular space, and establishing myelin sheets. Furthermore, these cells play a crucial role in immune and inflammatory functions in pathological conditions, contributing to both healthy and diseased states with neurological outcomes. In this regard, a major objective of this Special Issue is to collect studies and reviews on glial cells and the glial–neuronal interaction rearrangements that occur during aging or in neurodegenerative diseases, possible glial biomarkers, as well as studies on therapeutic approaches with which to counteract these compromised mechanisms.

Dr. Krista Minéia Wartchow
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • glial cells
  • glial–neuronal interaction
  • glial biomarkers
  • neurodegenerative diseases
  • therapeutic approaches

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

18 pages, 3034 KiB  
Review
The Astroglia Syncytial Theory of Consciousness
by James M. Robertson
Int. J. Mol. Sci. 2025, 26(12), 5785; https://doi.org/10.3390/ijms26125785 - 17 Jun 2025
Viewed by 43
Abstract
The neurological basis of consciousness remains unknown despite innumerable theories proposed for over a century. The major obstacle is that empirical studies demonstrate that all sensory information is subdivided and parcellated as it is processed within the brain. A central region where such [...] Read more.
The neurological basis of consciousness remains unknown despite innumerable theories proposed for over a century. The major obstacle is that empirical studies demonstrate that all sensory information is subdivided and parcellated as it is processed within the brain. A central region where such diverse information combines to form conscious expression has not been identified. A novel hypothesis was introduced over two decades ago that proposed astrocytes, with their ability to interconnect to form a global syncytium within the neocortex, are the locus of consciousness based on their ability to integrate synaptic signals. However, it was criticized because intercellular calcium waves, which are initiated by synaptic activity, are too slow to contribute to consciousness but ideal for memory formation. Although astrocytes are known to exhibit rapid electrical responses in active sensory pathways (e.g., vision), it was technically impossible to determine electrical activity within the astroglia syncytium because of the challenge of separating syncytial electrical responses from simultaneous neuronal electrical activity. Therefore, research on astroglia syncytial electrical activity lagged for over sixty years, until recently, when an ingenuous technique was developed to eliminate neuronal electrical interference. These technical advances have demonstrated that the astroglia syncytium, although massive and occupying the entire neocortex, is isoelectric with minimal impedance. Most importantly, the speed of electrical conductance within the syncytium is as rapid as that of neural networks. Therefore, the astroglia syncytium is theoretically capable of transmitting integrated local synaptic signaling globally throughout the entire neocortex to bind all functional areas of the brain in a timeframe required for consciousness. Full article
(This article belongs to the Special Issue The Function of Glial Cells in the Nervous System: 2nd Edition)
Show Figures

Figure 1

Back to TopTop