ijms-logo

Journal Browser

Journal Browser

The Role of Inflammasomes in Human Disease

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Immunology".

Deadline for manuscript submissions: closed (20 February 2025) | Viewed by 5161

Special Issue Editor


E-Mail Website
Guest Editor
University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
Interests: inflammasome; cancer survivors; melatonin; mitochondria; cardiovascular research

Special Issue Information

Dear Colleagues,

The inflammasomes are innate immune system receptors/sensors that regulate the activation of caspase-1 and induce inflammation in response to infectious microbes and molecules derived from host proteins. Extensive studies have demonstrated that inflammasomes play a vital role in aging, as well as infectious and autoimmune diseases, including type 2 diabetes, Alzheimer's disease, and atherosclerosis. 

By releasing pro-inflammatory cytokines, inflammasomes contribute to the initiation and maintenance of local or systemic inflammation. This inflammatory milieu has been shown to have a role in dampening anti-tumor immunity and suppressing tumor development. However, inflammasomes have also been linked to cell proliferation, alterations in transcriptional activity, stimulation of angiogenesis, and ultimately to the promotion of tumor cell survival and metastasis. Our intention is to provide a friendly and open forum for sharing high-quality manuscripts that address every possible aspect of this complex dual role of the inflammasome activity. Full research papers, impactful communications, comprehensive systematic reviews, or featured opinions are particularly welcome. The main Special Issue topics are as follows:

  1. The role of the inflammasome in resistance to influenza virus infection;
  2. The role of inflammasomes in cancer pathogenesis;
  3. Activation and regulatory mechanism of the inflammasome in chronic inflammatory diseases;
  4. Molecular mechanisms of novel therapeutic approaches for cancer treatment targeting inflammasomes.

Dr. Marisol Fernández-Ortiz
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inflammasome
  • IL-1 cytokines
  • inflammatory caspases
  • inflammasome activity manipulation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 1526 KiB  
Article
Inflamma-miRs Profile in Myelodysplastic Syndrome Patients
by Paola Montes, Iryna Rusanova, Elena Cornejo, Paloma García, Ana Guerra-Librero, Mª del Señor López, Tomás de Haro, Germaine Escames and Darío Acuña-Castroviejo
Int. J. Mol. Sci. 2024, 25(12), 6784; https://doi.org/10.3390/ijms25126784 - 20 Jun 2024
Viewed by 1546
Abstract
Etiological factors involved in myelodysplastic syndrome (MDS) include immunologic, oxidative stress and inflammatory factors, among others, and these are targets for microRNAs (miRNs). Here, we evaluated whether some miRNs may affect tumor development comparing untreated and 5-azacitidine (5-AZA) MDS-treated patients. Peripheral blood samples [...] Read more.
Etiological factors involved in myelodysplastic syndrome (MDS) include immunologic, oxidative stress and inflammatory factors, among others, and these are targets for microRNAs (miRNs). Here, we evaluated whether some miRNs may affect tumor development comparing untreated and 5-azacitidine (5-AZA) MDS-treated patients. Peripheral blood samples were collected from 20 controls and 24 MDS patients, and selected miRNs related to redox balance and inflammation (inflamma-miRs), including miR-18a, miR-21, miR-34a and miR-146a, were isolated and measured by quantitative real-time polymerase chain reaction (qRTPCR). A differential expression profile of miRNs was detected in untreated MDS patients and the 5-AZA group. Inflammation increases miRNs and, specifically, miR-18a, miR-21 and miR-34a were significantly overexpressed in untreated MDS, compared to controls. However, we did not observe any miRN profile alteration during the progression of the disease. On the other hand, 5-AZA treatment tends to restore miRN expression levels. Relating to prognostic risk factors, high-risk MDS groups (high Revised International Prognostic Scoring System (IPSS-R), high cytogenetic risk, high molecular risk (HMR) mutations) tended to be related with higher expression levels of miR-18a and miR-34a. Higher miRN expression is correlated with lower glutathione peroxidase activity, while they are related with a higher profile of pro-inflammatory cytokines (IL-2, IL-6, IL-8, TNF-α). Although our study was limited by the low number of MDS patients included, we identified miRN deregulation involved in MDS development that could regulate redox sensors and inflammatory responses. Finally, 5-AZA treatment is related with lower miRN expression levels in MDS patients. Full article
(This article belongs to the Special Issue The Role of Inflammasomes in Human Disease)
Show Figures

Figure 1

Review

Jump to: Research

35 pages, 3578 KiB  
Review
The Role of the Tumor Microenvironment (TME) in Advancing Cancer Therapies: Immune System Interactions, Tumor-Infiltrating Lymphocytes (TILs), and the Role of Exosomes and Inflammasomes
by Atef M. Erasha, Hanem EL-Gendy, Ahmed S. Aly, Marisol Fernández-Ortiz and Ramy K. A. Sayed
Int. J. Mol. Sci. 2025, 26(6), 2716; https://doi.org/10.3390/ijms26062716 - 18 Mar 2025
Cited by 1 | Viewed by 878
Abstract
Understanding how different contributors within the tumor microenvironment (TME) function and communicate is essential for effective cancer detection and treatment. The TME encompasses all the surroundings of a tumor such as blood vessels, fibroblasts, immune cells, signaling molecules, exosomes, and the extracellular matrix [...] Read more.
Understanding how different contributors within the tumor microenvironment (TME) function and communicate is essential for effective cancer detection and treatment. The TME encompasses all the surroundings of a tumor such as blood vessels, fibroblasts, immune cells, signaling molecules, exosomes, and the extracellular matrix (ECM). Subsequently, effective cancer therapy relies on addressing TME alterations, known drivers of tumor progression, immune evasion, and metastasis. Immune cells and other cell types act differently under cancerous conditions, either driving or hindering cancer progression. For instance, tumor-infiltrating lymphocytes (TILs) include lymphocytes of B and T cell types that can invade malignancies, bringing in and enhancing the ability of immune system to recognize and destroy cancer cells. Therefore, TILs display a promising approach to tackling the TME alterations and have the capability to significantly hinder cancer progression. Similarly, exosomes and inflammasomes exhibit a dual effect, resulting in either tumor progression or inhibition depending on the origin of exosomes, type of inflammasome and tumor. This review will explore how cells function in the presence of a tumor, the communication between cancer cells and immune cells, and the role of TILs, exosomes and inflammasomes within the TME. The efforts in this review are aimed at garnering interest in safer and durable therapies for cancer, in addition to providing a promising avenue for advancing cancer therapy and consequently improving survival rates. Full article
(This article belongs to the Special Issue The Role of Inflammasomes in Human Disease)
Show Figures

Figure 1

33 pages, 2460 KiB  
Review
Inflammasomes in Intestinal Disease: Mechanisms of Activation and Therapeutic Strategies
by Viviana Scalavino, Emanuele Piccinno, Gianluigi Giannelli and Grazia Serino
Int. J. Mol. Sci. 2024, 25(23), 13058; https://doi.org/10.3390/ijms252313058 - 4 Dec 2024
Cited by 1 | Viewed by 1943
Abstract
NOD-like receptors (NLRs) are a family of cytosolic pattern recognition receptors (PRRs) implicated in the innate immune sensing of pathogens and damage signals. NLRs act as sensors in multi-protein complexes called inflammasomes. Inflammasome activity is necessary for the maintenance of intestinal homeostasis, although [...] Read more.
NOD-like receptors (NLRs) are a family of cytosolic pattern recognition receptors (PRRs) implicated in the innate immune sensing of pathogens and damage signals. NLRs act as sensors in multi-protein complexes called inflammasomes. Inflammasome activity is necessary for the maintenance of intestinal homeostasis, although their aberrant activation contributes to the pathogenesis of several gastrointestinal diseases. In this review, we summarize the main features of the predominant types of inflammasomes involved in gastrointestinal immune responses and their implications in intestinal disease, including Irritable Bowel Syndrome (IBS), Inflammatory Bowel Disease (IBD), celiac disease, and Colorectal Cancer (CRC). In addition, we report therapeutic discoveries that target the inflammasome pathway, highlighting promising novel therapeutic strategies in the treatment of intestinal diseases. Collectively, our understanding of the mechanisms of intestinal inflammasome activation and their interactions with other immune pathways appear to be not fully elucidated. Moreover, the clinical relevance of the efficacy of inflammasome inhibitors has not been evaluated. Despite these limitations, a greater understanding of the effectiveness, specificity, and reliability of pharmacological and natural inhibitors that target inflammasome components could be an opportunity to develop new therapeutic options for the treatment of intestinal disease. Full article
(This article belongs to the Special Issue The Role of Inflammasomes in Human Disease)
Show Figures

Graphical abstract

Back to TopTop