ijms-logo

Journal Browser

Journal Browser

Exploring the Molecular, Physiological, and Biochemical Responses of Crops to Stress

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 29 June 2025 | Viewed by 2097

Special Issue Editor

Special Issue Information

Dear Colleagues,

Many biotic and abiotic stresses are threatening global agriculture. These stresses, ranging from pathogenic microorganisms and pests to environmental factors such as drought, salinity, and extreme temperatures, significantly impact crop growth and development, ultimately reducing yield. In light of this, it is imperative to explore the molecular mechanisms by which plants perceive, respond to, and mitigate the negative effects of these stresses. Understanding these complex mechanisms is not only crucial for enhancing crop resilience but also for ensuring food security in a rapidly changing climate. Plants have evolved sophisticated molecular and physiological strategies to cope with these stressors. This adaptive response often involves intricate networks of gene expression, metabolic pathways, and signaling cascades that enable plants to sense stress and activate defensive mechanisms. Given the multifaceted nature of these responses, there is an ongoing need to identify and exploit key genes and phenotypes that confer tolerance to a wide variety of biotic and abiotic stresses. Examining how a wide range of biotic and abiotic stresses affect various crops and better understanding how crop plants respond to these stresses are crucial.

This Special Issue aims to highlight the most recent breakthroughs in plant responses to biotic and abiotic stresses and adaptation/tolerance strategies. It provides an advanced toolkit and technologies used to investigate and understand plant responses to biotic and abiotic stresses. We welcome the submission of original research articles and review papers on the effects of biotic and abiotic stresses on crop plants.

Dr. Hakim Manghwar
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular signaling pathways in response to biotic stresses (e.g., bacteria, viruses, fungi, and insects)
  • plant responses to abiotic stresses (e.g., salinity, cold, drought, waterlogging, heat, heavy metals, and UV light)
  • mechanisms of stress adaptation and tolerance
  • stress adaptation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 9009 KiB  
Article
Wheat COBRA-like Gene TaCOBL6A2 Confers Heat Tolerance in Plants
by Qingyan Deng, Jiangtao Luo, Jianmin Zheng, Peixun Liu, Dejun Wang and Zongjun Pu
Int. J. Mol. Sci. 2025, 26(9), 4101; https://doi.org/10.3390/ijms26094101 - 25 Apr 2025
Viewed by 146
Abstract
Wheat, a cold-tolerant crop, suffers substantial yield and quality losses under heat stress, yet the genetic mechanisms underlying thermotolerance remain understudied. We characterized TaCOBL6A2, a novel COBRA-like gene on wheat chromosome 6A encoding a glycosylphosphatidylinositol (GPI)-anchored protein with a conserved COBRA domain, [...] Read more.
Wheat, a cold-tolerant crop, suffers substantial yield and quality losses under heat stress, yet the genetic mechanisms underlying thermotolerance remain understudied. We characterized TaCOBL6A2, a novel COBRA-like gene on wheat chromosome 6A encoding a glycosylphosphatidylinositol (GPI)-anchored protein with a conserved COBRA domain, and performed subcellular localization, tissue-specific expression, and stress response analyses to investigate its function. Functional validation was conducted based on TaCOBL6A2 overexpression in Arabidopsis and transcriptomic profiling. Additionally, a haplotype analysis of wheat varieties was performed to associate genotypes with heat stress phenotypes. The results show that TaCOBL6A2 is localized to the plasma membrane, the cell wall, and the nucleus, with the highest expression in early-stage grains. Its transcription was strongly induced by heat stress, exceeding that in response to cold, salt, or drought. Its overexpression in Arabidopsis enhanced thermotolerance and activated heat shock proteins (HSPs) and oxygen homeostasis pathways. The elite haplotype, Hap1, was associated with improved seedling growth and elevated antioxidant enzyme activity under heat stress. Our findings reveal that TaCOBL6A2 is a key regulator of wheat heat tolerance and could be used as a molecular target for breeding climate-resilient cultivars. Full article
Show Figures

Figure 1

23 pages, 25306 KiB  
Article
Comprehensive Characterization and Functional Analysis of the Lateral Organ Boundaries Domain Gene Family in Rice: Evolution, Expression, and Stress Response
by Shang Sun, Jingjing Yi, Peiling Gu, Yongtian Huang, Xin Huang, Hanqing Li, Tingting Fan, Jing Zhao, Ruozhong Wang, Mahmoud Mohamed Gaballah, Langtao Xiao and Haiou Li
Int. J. Mol. Sci. 2025, 26(9), 3948; https://doi.org/10.3390/ijms26093948 - 22 Apr 2025
Viewed by 172
Abstract
In this study, the LBD (Lateral Organ Boundaries Domain) gene family, a group of plant-specific transcription factors critical for plant growth and development as well as metabolic regulation, was comprehensively characterized in rice. We identified 36 LBD genes using multi-source genomic data and [...] Read more.
In this study, the LBD (Lateral Organ Boundaries Domain) gene family, a group of plant-specific transcription factors critical for plant growth and development as well as metabolic regulation, was comprehensively characterized in rice. We identified 36 LBD genes using multi-source genomic data and systematically classified them into Class I (31 genes) and Class II (5 genes). Analysis of their physicochemical properties revealed significant variations in amino acid length, molecular weight, isoelectric points, and hydropathicity. Motif analysis identified conserved LOB domains and other motifs potentially linked to functional diversity. Cis-acting element analysis indicated the involvement of these genes in various biological processes, including light response, hormone signaling, and stress response. Expression profiling demonstrated tissue-specific expression patterns, with several genes, such as XM_015770711.2, XM_015776632.2, and XM_015792766.2, showing relatively high expression in rice roots, implying their important role in root development. Transcriptome data further supported the involvement of specific genes in responses to phytohormones such as jasmonic acid (JA) and abscisic acid (ABA), as well as environmental stresses like cold and drought. Notably, XM_015770711.2, XM_015776632.2, and XM_015772758.2 may contribute to the regulation of rice environmental adaptability by mediating ABA and JA signaling pathways, respectively. In conclusion, this study identified members of the LBD gene family through the screening of two rice gene databases, and performed a comprehensive analysis of their physicochemical properties, evolutionary relationships, and expression profiles under various conditions. These findings provided valuable insights for further functional studies of LBD genes. Moreover, this study provides a foundation for targeting LBD genes to enhance stress resilience (e.g., drought/cold tolerance) and root architecture optimization. The LBD gene family possesses dual values in both stress resistance regulation and developmental optimization. The construction of its multidimensional functional map lays the theoretical and resource foundation for the precise design of high-yield and stress-resistant varieties. Full article
Show Figures

Figure 1

18 pages, 11484 KiB  
Article
ZmCaM2-1, a Calmodulin Gene, Negatively Regulates Drought Tolerance in Transgenic Arabidopsis Through the ABA-Independent Pathway
by Zhiqiang Wu, Meiyi Liu, Hanqiao Wang, Mingrui Li, Xiaoyue Liu, Zhenyuan Zang and Liangyu Jiang
Int. J. Mol. Sci. 2025, 26(5), 2156; https://doi.org/10.3390/ijms26052156 - 27 Feb 2025
Viewed by 455
Abstract
Calmodulin (CaM) family members play crucial roles in the response to various abiotic stresses. However, the functions of CaMs in the response to drought stress in maize are unclear. In this study, a CaM gene, ZmCaM2-1, was isolated from the maize ( [...] Read more.
Calmodulin (CaM) family members play crucial roles in the response to various abiotic stresses. However, the functions of CaMs in the response to drought stress in maize are unclear. In this study, a CaM gene, ZmCaM2-1, was isolated from the maize (Zea mays L.) inbred line B73. The coding sequence (CDS) of ZmCaM2-1 was 450 bp with a protein of 149 aa which contains four EF-hand motifs. The ZmCaM2-1 protein was located in the cell nucleus and membrane, and is able to bind to Ca2+. ZmCaM2-1 was strongly induced by drought, NaCl, and low-temperature treatments, except for abscisic acid (ABA) treatment. Overexpression of ZmCaM2-1 in Arabidopsis was found to decrease the drought tolerance with lower antioxidant enzyme activity and greater reactive oxygen species (ROS) production. Moreover, there was no significant difference in the phenotype and ABA-related gene expression levels between ZmCaM2-1-overexpressing Arabidopsis and the wild type (WT) under ABA treatment. These results indicate that ZmCaM2-1 negatively regulates the tolerance of Arabidopsis to drought stress through the ABA-independent pathway. Full article
Show Figures

Figure 1

18 pages, 5981 KiB  
Article
Identification, Phylogeny, and Expression Profiling of Pineapple Heat Shock Proteins (HSP70) Under Various Abiotic Stresses
by Rui Xu, Fangjun Wei, Yanzhao Chen, Faiza Shafique Khan, Yongzan Wei and Hongna Zhang
Int. J. Mol. Sci. 2024, 25(24), 13407; https://doi.org/10.3390/ijms252413407 - 14 Dec 2024
Viewed by 853
Abstract
Pineapple (Ananas comosus (L.) Merr.) is an economically significant and delicious tropical fruit. Pineapple commercial production faces severe decline due to abiotic stresses, which affect the development and quality of pineapple fruit. Heat shock protein 70 (HSP70) plays an essential role in abiotic [...] Read more.
Pineapple (Ananas comosus (L.) Merr.) is an economically significant and delicious tropical fruit. Pineapple commercial production faces severe decline due to abiotic stresses, which affect the development and quality of pineapple fruit. Heat shock protein 70 (HSP70) plays an essential role in abiotic stress tolerance. However, the pineapple HSP70 family identification and expression analysis in response to abiotic stresses has not been studied. To explore the functional role of AcHSP70, different abiotic stress treatments were applied to pineapple cultivar “Bali” seedlings. A total of 21 AcHSP70 members were identified in the pineapple genome. The identified genes were classified into four subfamilies (I–IV) using phylogenetic analysis. The AcHSP70 family is expressed under different stress conditions. Quantitative real time polymerase chain reaction (qRT-PCR) revealed the expression pattern of the AcHSP70 family under cold, drought, salt, and heat stress. The expression level of genes such as AcHSP70-2 increased under heat, cold, and drought stress, while the expression level of genes such as AcHSP70-3 decreased under salt stress. Furthermore, the expression profile of AcHSP70s in different tissues and development stages was analyzed using transcriptome analysis. The HSP70 genes exhibited unique expression patterns in pineapple tissue at different developmental stages. The study therefore provides a list of HSP70 genes with substantial roles in abiotic stress response and valuable information for understanding AcHSP70 functional characteristics during abiotic stress tolerance in pineapple. Full article
Show Figures

Figure 1

Back to TopTop