ijms-logo

Journal Browser

Journal Browser

Physicochemical Properties and Applications of Nanomaterials in Biology and Medicine

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 2693

Special Issue Editor


E-Mail Website
Guest Editor
Department of Chemistry, Kyungpook National University, Daegu 41566, Republic of Korea
Interests: nanomaterials; nanomaterial synthesis; imaging agents; nanomedicine; contrast agents; nanoparticle colloid; surface modification
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanoparticles, nanomaterials, nanorods, core–shell nanoparticles, and hybrid nanoparticles have been extensively studied for their use in various biomedical applications, including as contrast agents in magnetic resonance imaging (MRI) and X-ray computed tomography (CT), as well as in drug delivery, fluorescent imaging, biolabeling, biosensing, etc. Their properties are superior to those of conventional molecules and chelates. Many reports have detailed their synthesis, physicochemical properties, and biomedical applications, highlighting their unique and advanced properties that make them particularly useful in the diagnosis of diseases.

The aim of this Special Issue is to showcase a variety of nanoparticles and nanomaterials that can be applied in biomedicine, nanomedicine, and nanobiology, with a focus on their physicochemical properties and biomedical applications. The key topics addressed in this Issue will include the synthesis of nanoparticles and nanomaterials, the characterization of their physicochemical properties using various techniques, surface modification processes, and in vitro and in vivo biomedical applications. The surface modification of nanoparticles and nanomaterials with hydrophilic and biocompatible ligands is essential for their use in biomedical applications.

Prof. Dr. Gangho Lee
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanoparticle
  • nanomaterial
  • biomedicine
  • synthesis
  • physicochemical properties
  • imaging
  • therapy
  • contrast agent
  • therapeutic agent

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 3290 KB  
Article
Amphiphilic Poly(N-vinylpyrrolidone) Biocomposites with Bortezomib and DR5-Selective TRAIL Variants: A Promising Approach to Pancreatic Cancer Treatment
by Ekaterina Kukovyakina, Alina A. Isakova, Dmitry Bagrov, Marine Gasparian, Andrey Kuskov and Anne Yagolovich
Int. J. Mol. Sci. 2025, 26(23), 11620; https://doi.org/10.3390/ijms262311620 - 30 Nov 2025
Viewed by 263
Abstract
A promising strategy for pancreatic cancer therapy involves developing nanocarriers capable of simultaneously delivering various antitumor substances with diverse physicochemical properties, often resulting in synergistic effects. In the present work, novel biocomposites were developed using amphiphilic N-vinylpyrrolidone polymer incorporating bortezomib (BTZ) and modified [...] Read more.
A promising strategy for pancreatic cancer therapy involves developing nanocarriers capable of simultaneously delivering various antitumor substances with diverse physicochemical properties, often resulting in synergistic effects. In the present work, novel biocomposites were developed using amphiphilic N-vinylpyrrolidone polymer incorporating bortezomib (BTZ) and modified with either the DR5-selective TRAIL cytokine (DR5-B) or its fusion with the iRGD effector peptide (DR5-B-iRGD), resulting in AmphPVP-BTZ-DR5-B and AmphPVP-BTZ-DR5-B-iRGD formulations. The release of BTZ was most extensive at acidic pH 5.6, mimicking endolysosomal compartments, while at near-neutral pH 7.4 and alkaline pH 8.2 the release was slower and less complete, indicating a smart pH-responsive behavior suitable for triggered release in the tumor microenvironment. Both AmphPVP-BTZ-DR5-B and AmphPVP-BTZ-DR5-B-iRGD significantly inhibited the growth of pancreatic adenocarcinoma cell lines PANC-1, BxPC-3, and MIA PaCa-2 and induced more rapid internalization of the DR5 receptor in MIA PaCa-2 cells than unmodified particles and free DR5-B or DR5-B-iRGD. Importantly, AmphPVP-BTZ-DR5-B-iRGD exhibited a more pronounced DR5 internalization rate and cytotoxic effect than AmphPVP-BTZ-DR5-B owing to the presence of fusion protein with internalizing iRGD peptide. Both biocomposites induced cell death via the apoptotic pathway while exhibiting minimal cytotoxic effects on healthy cells. Therefore, biocomposites incorporating BTZ and functionalized with DR5-selective TRAIL variants DR5-B or DR5-B-iRGD represent a promising avenue for future studies in pancreatic cancer animal models. Full article
Show Figures

Figure 1

21 pages, 7261 KB  
Article
Albumin-Phthalocyanine Nanoconjugates as Platforms for Enhanced Photodynamic Cancer Therapy
by Valentina I. Gorbacheva, Anastasiia O. Syrocheva and Ekaterina P. Kolesova
Int. J. Mol. Sci. 2025, 26(23), 11559; https://doi.org/10.3390/ijms262311559 - 28 Nov 2025
Viewed by 191
Abstract
This study investigates the enhancement of photodynamic therapy (PDT) efficacy through the encapsulation of platinum phthalocyanine (Pc) in albumin nanoparticles (ANP). Encapsulation of Pc in ANP) significantly enhances its biological effects in photodynamic therapy by increasing cellular uptake through receptor-mediated endocytosis and promoting [...] Read more.
This study investigates the enhancement of photodynamic therapy (PDT) efficacy through the encapsulation of platinum phthalocyanine (Pc) in albumin nanoparticles (ANP). Encapsulation of Pc in ANP) significantly enhances its biological effects in photodynamic therapy by increasing cellular uptake through receptor-mediated endocytosis and promoting lysosomal accumulation. This leads to marked lysosomal stress and regulated necrotic cell death pathway, while free Pc causes moderate oxidative stress with reversible apoptosis and autophagy. The enhanced phototoxicity of encapsulated Pc was evident across multiple cancer cell lines, especially aggressive phenotypes, whereas resistant lines showed lower sensitivity likely due to efficient ROS scavenging. Despite improved initial uptake, rapid lysosomal release and extracellular extrusion of Pc limit long-term intracellular retention. Morphological and gene expression analyses confirmed distinct cell death mechanisms between free and encapsulated Pc, underscoring the critical role of nanocarrier-mediated delivery in modulating oxidative stress and cellular response. These findings highlight the importance of nanoparticle design in optimizing PDT efficacy by effectively triggering necrotic cell death pathway. Full article
Show Figures

Figure 1

10 pages, 803 KB  
Article
Emulsified Homo (Ciprofloxacin) Polymer Nanoparticles for Antibacterial Applications
by Faeez Mahzamani and Edward Turos
Int. J. Mol. Sci. 2025, 26(20), 10034; https://doi.org/10.3390/ijms262010034 - 15 Oct 2025
Viewed by 339
Abstract
We report for the first time a method for forming polyacrylate nanoparticles using N-acryloylciprofloxacin as a sole monomer for emulsion polymerization. The procedure involves a free radical-induced emulsion polymerization of N-acryloylciprofloxacin monomer to produce a stable aqueous emulsion comprising uniformly sized polyacrylate nanoparticles. [...] Read more.
We report for the first time a method for forming polyacrylate nanoparticles using N-acryloylciprofloxacin as a sole monomer for emulsion polymerization. The procedure involves a free radical-induced emulsion polymerization of N-acryloylciprofloxacin monomer to produce a stable aqueous emulsion comprising uniformly sized polyacrylate nanoparticles. Dynamic light scattering analysis of the emulsions showed a single population of nanoparticles having an average diameter of 970 nm and average surface charge of −63 mV, indicative of the high stability of the emulsion and significantly enhance lipophilicity of the polymeric matrix of the nanoparticle. Antibacterial testing of the emulsions against the Gram-positive microbe Staphylococcus aureus and the Gram-negative Escherichia coli found in vitro activities identical to those of the reference clinical agent, ciprofloxacin. Assays against human colorectal carcinoma cells and human embryonic kidney cells showed essentially no cytotoxicity. This is the first study on the synthesis of aqueous nanoparticle emulsions assembled solely from a single monomer derived from the antibiotic agent. Full article
Show Figures

Figure 1

17 pages, 2281 KB  
Article
Natural Polysaccharide-Based Nanoparticles Enhance Intracellular Delivery and Cytotoxicity of Antrodia camphorata in Breast Cancer Cells
by Yu-Chen Tsai, Hiroki Miyajima, Ming-Yang Chou and Satoshi Fujita
Int. J. Mol. Sci. 2025, 26(17), 8420; https://doi.org/10.3390/ijms26178420 - 29 Aug 2025
Cited by 3 | Viewed by 1552
Abstract
Antrodia camphorata (AC), a medicinal fungus native to Taiwan, contains bioactive compounds such as triterpenoids with anticancer properties. However, their high lipophilicity results in poor aqueous solubility and limited bioavailability, restricting their therapeutic application. To address this issue, a nanoparticle-based delivery system was [...] Read more.
Antrodia camphorata (AC), a medicinal fungus native to Taiwan, contains bioactive compounds such as triterpenoids with anticancer properties. However, their high lipophilicity results in poor aqueous solubility and limited bioavailability, restricting their therapeutic application. To address this issue, a nanoparticle-based delivery system was developed using chitosan, alginate, and hyaluronic acid to encapsulate AC extracts. AC-loaded nanoparticles (AC-NPs) with a particle size less than 100 nm improved drug solubility and facilitated intracellular accumulation. Assessment of cytotoxicity revealed that AC-NPs significantly and more effectively suppressed the growth of breast cancer cells than free AC extracts. After 72 h, IC50 values for MDA-MB-231 (triple-negative) and MCF-7 (estrogen receptor-positive) were 46.9 and 75.6 μg/mL, respectively, with greater sensitivity observed in MDA-MB-231 cells. AC-NPs exhibited minimal toxicity toward normal mammary epithelial cells (NMuMG), indicating good biocompatibility. Fluorescently labeled AC-NPs showed rapid, time-dependent uptake in both cancer cell lines. Particularly, MDA-MB-231 cells exhibited rapid internalization, whereas MCF-7 cells likely benefited from hyaluronic acid-mediated targeting of CD44 receptors. In conclusion, AC-NPs enhanced the solubility, cellular uptake, and anticancer efficacy of AC while maintaining biocompatibility, thereby suggesting their robust potential as nanocarrier platforms for breast cancer therapy. Full article
Show Figures

Graphical abstract

Back to TopTop