ijms-logo

Journal Browser

Journal Browser

Updates and Advances in the Field of Glioblastomas: Mechanisms, Microenvironment and Treatments

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 995

Special Issue Editor


E-Mail Website
Guest Editor
Institute of Pathology, Ente Ospedaliero Cantonale (EOC), 6900 Locarno, Switzerland
Interests: glioblastoma; immunotherapy; gliomas; miRNA; non-small cell lung cancer; cancer therapy

Special Issue Information

Dear Colleagues,

Despite the many years of effort and research spent searching for new clinical approaches and markers for treating glioblastoma multiforme (GBM), this tumor still remains one of the most common primary malignancies. However, recent years have seen major changes in classification, combined with the increased importance of precise molecular characterization. Significant advances have been reported in the taxonomy, classification, and grading of both adult and pediatric brain gliomas. In addition, the roles of the microenvironment, gene profiling, and molecular research are being further studied to ensure precise diagnoses and identify new treatments. This Special Issue aims to clarify the importance of molecular heterogeneity in GBM, both in adults and children, and to bridge mechanistic discoveries with translational innovation.

We welcome submissions, including original papers and reviews. Since IJMS is a journal of molecular science, pure clinical or model studies are not suitable. However, clinical or pure model submissions with biomolecular experiments are welcome. Our Special Issue will focus on, but is not restricted to, the following:

  • Tumor signatures in primary vs. secondary gliomas;
  • The role of recently identified biomarkers in both the prognosis and treatment of pediatric and adult gliomas;
  • Role of checkpoints inhibitors in low- and high-grade gliomas;
  • Mechanisms of recurrence of high-grade gliomas;
  • Molecular features in low-grade gliomas shifting into high-grade gliomas.

Dr. Samantha Epistolio
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • GBM
  • molecular classification
  • pediatric diffuse gliomas
  • signaling pathways in GBMs
  • recurrent gliomas
  • midbrain gliomas
  • immunotherapy
  • targeted therapies for GBMs

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

31 pages, 11117 KB  
Article
Multiomics Investigation of Exhausted T Cells in Glioblastoma Tumor Microenvironment: CCL5 as a Prognostic and Therapeutic Target
by Ruihao Qin, Menglei Hua, Yaru Wang, Qi Zhang, Yong Cao, Yanyan Dai, Chenjing Ma, Xiaohan Zheng, Kaiyuan Ge, Huimin Zhang, Shi Li, Yan Liu, Lei Cao and Liuying Wang
Int. J. Mol. Sci. 2025, 26(20), 9920; https://doi.org/10.3390/ijms26209920 - 12 Oct 2025
Viewed by 271
Abstract
Glioblastoma multiforme (GBM) is a common malignancy with poor prognosis, and exhausted T (TEX) cells, a subset of T cells characterized by progressive loss of effector functions, play a critical role in its progression. This study aimed to investigate the impact of TEX-related [...] Read more.
Glioblastoma multiforme (GBM) is a common malignancy with poor prognosis, and exhausted T (TEX) cells, a subset of T cells characterized by progressive loss of effector functions, play a critical role in its progression. This study aimed to investigate the impact of TEX-related genes on immune function, prognosis, and drug sensitivity in GBM through multiomics analysis. Initially, we identified a novel set of TEX-related genes specific to GBM and screened hub genes (CCL5, IL18, CXCR6, FCER1G, TNFSF13B) using conventional statistical methods combined with machine learning. A prognostic risk model was subsequently constructed based on TCGA data and validated in the CGGA cohort. Single-cell and pharmacogenomic analyses revealed significant differences in tumor microenvironment composition and drug sensitivity between risk groups. Notably, Palbociclib emerged as a potential therapeutic agent targeting the novel discovered biomarker CCL5. RT-qPCR results showed that T cells with low CCL5 expression exhibited reduced expression of immune checkpoint-related genes (PD1, TIM3, LAG3) and increased expression of CD28, suggesting enhanced immune function. In conclusion, our findings highlight five hub genes as prognostic markers that could stratify GBM patients with different immune landscapes and levels of drug sensitivity. Furthermore, experimental results suggest that low CCL5 expression could alleviate T cell exhaustion and represent a promising therapeutic target, offering new strategies for improving GBM prognosis. Full article
Show Figures

Figure 1

21 pages, 5179 KB  
Article
Rat Glioma 101.8 Tissue Strain: Molecular and Morphological Features
by Anna Igorevna Alekseeva, Alexandra Vladislavovna Sentyabreva, Vera Vladimirovna Kudelkina, Ekaterina Alexandrovna Miroshnichenko, Alexandr Vladimirovich Ikonnikov, Elena Evgenievna Kopantseva, Anna Mikhailovna Kosyreva and Timur Khaysamudinovich Fatkhudinov
Int. J. Mol. Sci. 2025, 26(18), 8992; https://doi.org/10.3390/ijms26188992 - 15 Sep 2025
Viewed by 509
Abstract
The search for markers applicable for efficient differential diagnosis and personalized therapy is a priority task of experimental neuro-oncology. Modern molecular methods allow us to analyze human biopsy material; however, further actions with this extracted tumor tissue are limited. Relevant and sophisticated CNS [...] Read more.
The search for markers applicable for efficient differential diagnosis and personalized therapy is a priority task of experimental neuro-oncology. Modern molecular methods allow us to analyze human biopsy material; however, further actions with this extracted tumor tissue are limited. Relevant and sophisticated CNS tumor models are required for precise therapy development. Although it is possible to use human biomaterial to create 2D and 3D cultures and implant them into xenograft animals, the data generated from such models is limited. Due to changes in the classification of the CNS tumors in 2021, a representative model should have not only morphological similarity to human tumors but also key genetic aberrations for studying the mechanisms of carcinogenesis and personalized therapy (such as PDGFRa, Olig1/2, Sox2, and Mki67) for different glioma models such as astrocytoma, oligodendroglioma, and glioblastoma. On the basis of a unique scientific facility “The Collection of experimental tumors of the nervous system and neural tumor cell lines” (Avtsyn Research Institute of Human Morphology of “Petrovsky National Research Center of Surgery”), there is a biobank of chemically induced transplantable tumors of laboratory animals. Their properties, mechanisms, and progression closely correlate with malignant CNS neoplasms in humans. These are potentially useful for identifying novel signaling pathways associated with oncogenesis in the nervous system and personalizing therapeutic approaches. In our work, we characterized a tissue-transplantable brain tumor strain of rat glioma101.8 using MRI, IHC, scRNA-seq, and qPCR-RT methods. According to this study, the cellular composition of the tissue-transplantable rat glioma 101.8 strain was determined, as well as the major genetic signature characteristics of each cell population of this tissue-transplantable strain and its microenvironment. Full article
Show Figures

Figure 1

Back to TopTop