ijms-logo

Journal Browser

Journal Browser

Triosephosphate Isomerase: Potential Target in Cancer Treatment and Other Diseases

Special Issue Editor


E-Mail Website
Guest Editor
Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
Interests: protein structure and function; oligosaccharides and health; natural polymers; natural polysaccharides
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer is one of the leading causes of death worldwide, and the burden of cancer incidence and mortality is rapidly growing. Many drugs are currently used, but treatments can cause severe side effects. Increased glycolytic activity is characteristic of cancer cells, and triosephosphate isomerase (TPI) is essential for net ATP production in the glycolytic pathway.

Cancer usually implies an overexpression of TPI, and some post-translational events causing functional and structural alterations of TPI have also been described. Such differences represent an opportunity to develop new strategies against cancer. Mounting evidence indicates that TPI is a multitasking protein of importance in the physiopathology of several kinds of cancer and other diseases.

Since TPI is a key enzyme in the metabolism of all glycolytic cells, it becomes an important therapeutic target in many ways. Therefore, this Special Issue aims to provide a forum for those who study TPI as a potential target for treating cancer and other diseases. Discovering TPI's role in human diseases will bring us closer to more effective and safer treatments.

Dr. Gabriel López-Velázquez
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cancer
  • glycolytic
  • triosephosphate isomerase
  • TPI
  • post-translational modification
  • cancer treatment

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

20 pages, 3203 KB  
Review
The Remarkable Role of Triosephosphate Isomerase in Diabetes Pathophysiology
by Mónica Rodríguez-Bolaños and Ruy Perez-Montfort
Int. J. Mol. Sci. 2025, 26(18), 8809; https://doi.org/10.3390/ijms26188809 - 10 Sep 2025
Viewed by 1137
Abstract
This work reviews the complex role of the enzyme triosephosphate isomerase (TIM) (EC 5.3.1.1) within the context of diabetes, a prevalent metabolic disorder. It summarizes the main biochemical pathways, cellular mechanisms, and molecular interactions that highlight both the function of TIM and its [...] Read more.
This work reviews the complex role of the enzyme triosephosphate isomerase (TIM) (EC 5.3.1.1) within the context of diabetes, a prevalent metabolic disorder. It summarizes the main biochemical pathways, cellular mechanisms, and molecular interactions that highlight both the function of TIM and its implications in diabetes pathophysiology, particularly focusing on its regulatory role in glucose metabolism and insulin secretion. TIM’s involvement is detailed from its enzymatic action in glycolysis, influencing the equilibrium between dihydroxyacetone phosphate and glyceraldehyde-3-phosphate, to its broader implications in cellular metabolic processes. The article highlights how mutations in TIM can lead to metabolic inefficiencies that exacerbate diabetic conditions. It discusses the interaction of TIM with various cellular pathways, including its role in the ATP-sensitive potassium channels in pancreatic beta cells, which are crucial for insulin release. Moreover, we indicate the impact of oxidative stress in diabetes, noting how TIM is affected by reactive oxygen species, which can disrupt normal cellular functions and insulin signaling. The enzyme’s function is also tied to broader cellular and systemic processes, such as membrane fluidity and cellular signaling pathways, including the mammalian target of rapamycin, which are critical in the pathogenesis of diabetes and its complications. This review emphasizes the dual role of TIM in normal physiological and pathological states, suggesting that targeting TIM-related pathways could offer novel therapeutic strategies for managing diabetes. It encourages an integrated approach to understanding and treating diabetes, considering the multifaceted roles of biochemical players such as TIM that bridge metabolic, oxidative, and regulatory functions within the body. Full article
Show Figures

Figure 1

Back to TopTop