ijms-logo

Journal Browser

Journal Browser

New Advances in Opioid Research

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pharmacology".

Deadline for manuscript submissions: 20 October 2025 | Viewed by 1150

Special Issue Editor


E-Mail Website
Guest Editor
Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
Interests: addictions; opioids; pain; hyperbaric oxygen treatment; natural products and drug interactions

Special Issue Information

Dear Colleagues,

Opioid addiction has tripled in the last 25 years, now affecting over 35 million people worldwide. Recurrence rates remain high, and opioid research has been largely limited by stigma, social disparities, and regulatory barriers. This Special Issue invites cutting-edge research from across the continuum from molecular mechanisms to translational clinical approaches. Relevant topics include the use of hyperbaric oxygen for opioid withdrawal in animal and human experiments, as well as findings from complementary, alternative, and integrative research projects. While molecular level research is a priority, mixed-methods patient research findings are also welcome.

This Special Issue is supervised by Dr. Matthew E. Layton, assisted by our Guest Editor’s Assistant Editor Dr. Poppy Gardiner (Washington State University, https://medicine.wsu.edu/directory/wsu-profile/poppymay.gardiner/).

Dr. Matthew E. Layton
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • methadone
  • buprenorphine
  • hyperbaric oxygen
  • complementary/alternative/integrative treatments
  • patient-centered outcomes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

16 pages, 2771 KiB  
Article
An Investigation of the RNA Modification m6A and Its Regulatory Enzymes in Rat Brains Affected by Chronic Morphine Treatment and Withdrawal
by Anna Hronova, Eliska Pritulova, Lucie Hejnova and Jiri Novotny
Int. J. Mol. Sci. 2025, 26(9), 4371; https://doi.org/10.3390/ijms26094371 - 4 May 2025
Viewed by 219
Abstract
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying [...] Read more.
N6-methyladenosine (m6A) is one of the most prevalent methylated modifications of mRNA in eukaryotes. This reversible alteration can directly or indirectly influence biological functions, including RNA degradation, translation, and splicing. This study investigates the impact of chronic morphine administration and varying withdrawal durations (1 day, 1 week, 4 weeks, and 12 weeks) on the m6A modification levels in brain regions critical to addiction development and persistence. Our findings indicate that in the prefrontal cortex, the m6A levels and METTL3 expression decrease, accompanied by an increase in FTO and ALKBH5 expression, followed by fluctuating, but statistically insignificant changes in methylation-regulating enzymes over prolonged withdrawal. In the striatum, reductions in m6A levels and METTL3 expression are observed at 4 weeks of withdrawal, preceded by non-significant fluctuations in enzyme expression and the m6A modification levels. In contrast, no changes in the m6A modification levels or the expression of related enzymes are detected in the hippocampus and the cerebellum. Our data suggest that m6A modification and its regulatory enzymes undergo region-specific and time-dependent changes in response to chronic morphine exposure and subsequent withdrawal. Full article
(This article belongs to the Special Issue New Advances in Opioid Research)
Show Figures

Figure 1

20 pages, 5879 KiB  
Article
Drug-Checking and Monitoring New Psychoactive Substances: Identification of the U-48800 Synthetic Opioid Using Mass Spectrometry, Nuclear Magnetic Resonance Spectroscopy, and Bioinformatic Tools
by Maria Beatriz Pereira, Carlos Família, Daniel Martins, Mar Cunha, Mário Dias, Nuno R. Neng, Helena Gaspar and Alexandre Quintas
Int. J. Mol. Sci. 2025, 26(5), 2219; https://doi.org/10.3390/ijms26052219 - 28 Feb 2025
Viewed by 602
Abstract
The misuse of opioids and opiates has remained a persistent issue since the 19th century. The recent resurgence of non-fentanyl synthetic opioids, such as U-type opioids and nitazenes, has further exacerbated the ongoing crisis. Identifying these synthetic opioids presents many challenges, including the [...] Read more.
The misuse of opioids and opiates has remained a persistent issue since the 19th century. The recent resurgence of non-fentanyl synthetic opioids, such as U-type opioids and nitazenes, has further exacerbated the ongoing crisis. Identifying these synthetic opioids presents many challenges, including the emergence of new substances, the lack of standards, and the presence of structural isomers. This highlights the need for a robust structural characterisation strategy in forensic laboratories. To address these challenges, we developed a methodology to identify a U-type opioid sample received by Kosmicare from the European Union-funded SCANNER project, which was suspected to be either U-48800 or U-51754. Our innovative approach combined gas chromatography coupled with mass spectrometry (GC-MS), nuclear magnetic resonance spectroscopy (NMR), and molecular dynamics to characterise the questioned sample unequivocally. While the GC-MS analysis suggested a potential match with the mass spectrum of U-51754 and its structural isomer U-48800, NMR analysis confirmed the presence of U-48800 in the sample, which was further validated through molecular dynamics experiments. These experiments provided additional insights, confirming the structural features underlying the obtained NMR profile. The presented methodology offers a valuable solution for cases involving the identification of isomers, which are currently one of the most significant challenges in identifying new psychoactive substances. Full article
(This article belongs to the Special Issue New Advances in Opioid Research)
Show Figures

Figure 1

Back to TopTop