Previous Issue
Volume 1, June
 
 

Intell. Infrastruct. Constr., Volume 1, Issue 2 (September 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
19 pages, 5379 KB  
Article
Geometric Coupling Effects of Multiple Cracks on Fracture Behavior: Insights from Discrete Element Simulations
by Shuangping Li, Bin Zhang, Hang Zheng, Zuqiang Liu, Xin Zhang, Linjie Guan and Han Tang
Intell. Infrastruct. Constr. 2025, 1(2), 6; https://doi.org/10.3390/iic1020006 - 25 Aug 2025
Abstract
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to [...] Read more.
Understanding the multi-crack coupling fracture behavior in brittle materials is particularly critical for aging dam infrastructure, where 78% of structural failures originate from crack network coalescence. In this study, we introduce the concepts of crack distance ratio (DR) and size ratio (SR) to describe the relationship between crack position and length and employ the discrete element method (DEM) for extensive numerical simulations. Specifically, a crack density function is introduced to assess microscale damage evolution, and the study systematically examines the macroscopic mechanical properties, failure modes, and microscale damage evolution of rock-like materials under varying DR and SR conditions. The results show that increasing the crack distance ratio and crack angle can inhibit the crack formation at the same tip of the prefabricated crack. The increase in the size ratio will promote the formation of prefabricated cracks on the same side. The increase in the distance ratio and size ratio significantly accelerate the rapid increase in crack density in the second stage. The crack angle provides the opposite effect. In the middle stage of loading, the growth rate of crack density decreases with the increase in crack angle. Overall, the size ratio has a greater influence on the evolution of microscopic damage. This research provides new insights into understanding and predicting the behavior of materials under complex stress conditions, thus contributing to the optimization of structural design and the improvement of engineering safety. Full article
Show Figures

Figure 1

22 pages, 4581 KB  
Article
Strategies to Mitigate Risks in Building Information Modelling Implementation: A Techno-Organizational Perspective
by Ibrahim Dogonyaro and Amira Elnokaly
Intell. Infrastruct. Constr. 2025, 1(2), 5; https://doi.org/10.3390/iic1020005 - 17 Jul 2025
Viewed by 310
Abstract
The construction industry is moving towards the era of industry 4.0; 5.0 with Building Information Modelling (BIM) as the tool gaining significant traction owing to its inherent advantages such as enhancing construction design, process and data management. However, the integration of BIM presents [...] Read more.
The construction industry is moving towards the era of industry 4.0; 5.0 with Building Information Modelling (BIM) as the tool gaining significant traction owing to its inherent advantages such as enhancing construction design, process and data management. However, the integration of BIM presents risks that are often overlooked in project implementation. This study aims to develop a novel amalgamated dimensional factor (Techno-organizational Aspect) that is set out to identify and align appropriate management strategies to these risks. Firstly, it encompasses an in-depth analysis of BIM and risk management, through an integrative review approach. The study utilizes an exploratory-based review centered around journal articles and conference papers sourced from Scopus and Google Scholar. Then processed using NVivo 12 Pro software to categorise risks through thematic analysis, resulting in a comprehensive Risk Breakdown Structure (RBS). Then qualitative content analysis was employed to identify and develop management strategies. Further data collection via online survey was crucial for closing the research gap identified. The analysis by mixed method research enabled to determine the risk severity via the quantitative approach using SPSS (version 29), while the qualitative approach linked management strategies to the risk factors. The findings accentuate the crucial linkages of key strategies such as version control system that controls BIM data repository transactions to mitigate challenges controlling transactions in multi-model collaborative environment. The study extends into underexplored amalgamated domains (techno-organisational spectrum). Therefore, a significant contribution to bridging the existing research gap in understanding the intricate relationship between BIM implementation risks and effective management strategies. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop