Special Issue "Forest Stand Dynamics and Its Applications"

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Forest Ecology and Management".

Deadline for manuscript submissions: closed (30 April 2020) | Viewed by 10221

Special Issue Editor

Prof. Dr. Pil Sun Park
E-Mail Website
Guest Editor
Department of Forest Sciences, Seoul National University, Seoul 08826, Korea
Interests: forest ecology; forest stand dynamics; disturbance; regeneration ecology; silviculture; mixed forests; forest restoration

Special Issue Information

Dear Colleagues,

Forests change continuously, interacting with disturbances and the surrounding environment. Past species composition, stand age, and disturbance history result in the current forest structure, which changes over time. Stand structure and disturbance affect each other, determining stand development and subsequent structure. The rate and amount of stand changes are affected by the growth rates of trees, species composition, species life history traits, stand structure, disturbance, and the environment supporting the forest ecosystem, and are key issues for forest management.

Forest stand dynamics focuses on changes in forest stand structure with time, including stand behavior during and after disturbance. Information on current stand structure, the rate and amount of stand changes, and disturbance regime help to predict stand conditions and ecosystem structure in the future, and lead to better silvicultural regimes for forest management goals. Forests should be managed based on an understanding of the ecological characteristics of stands and forest stand dynamics. This Special Issue focuses on research and findings on changes in species composition and stand structure, as well as ways to use the forest stand dynamics information.

Prof. Dr. Pil Sun Park
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stand structure
  • disturbance
  • regeneration
  • species composition

Published Papers (8 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Comparison of Mangrove Stand Development on Accretion and Erosion Sites in Ca Mau, Vietnam
Forests 2020, 11(6), 615; https://doi.org/10.3390/f11060615 - 01 Jun 2020
Cited by 6 | Viewed by 1042
Abstract
Mangroves are adapted to coastal processes; however, mangrove species showed various responses to estuarian environments, leading to different structural characteristics at accretion and erosion areas. The species composition, structure and regeneration of mangrove forests were investigated to provide insight into mangrove forest development [...] Read more.
Mangroves are adapted to coastal processes; however, mangrove species showed various responses to estuarian environments, leading to different structural characteristics at accretion and erosion areas. The species composition, structure and regeneration of mangrove forests were investigated to provide insight into mangrove forest development in response to shoreline accretion and erosion processes. The species composition and stand structure of mangrove forests were measured along the distance from the shoreline at accretion and erosion sites in Ca Mau, Vietnam. The hierarchical clustering of grouped stands based on species composition and tree size distribution was conducted. Grouped mangrove stands showed landward changes in species composition and stand structure from the shoreline (p < 0.05), reflecting the timescale of accretion or erosion at both accretion and erosion sites. Stand development patterns differed between accretion and erosion sites, and Avicennia alba and Rhizophora apiculata dominated seaward plots at accretion and erosion sites, respectively. Newer accredited sites were dominated by A. alba. Mangrove stands developed from dense A. alba dominant to R. apiculata dominant stands with increasing tree size at accretion sites. There were more species-colonized sites with a higher erosion rate or that were more recently eroded, implying that timescale of erosion and erosion rate affected species composition and regeneration on erosion sites. Accretion and erosion affected stand development of mangroves differently, implying that conservation and restoration strategies should be applied differently to accretion and erosion sites. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Article
Assessment of Restoration Effects and Invasive Potential Based on Vegetation Dynamics of Pitch Pine (Pinus rigida Mill.) Plantation in Korea
Forests 2020, 11(5), 568; https://doi.org/10.3390/f11050568 - 19 May 2020
Cited by 1 | Viewed by 897
Abstract
During the period of Japanese occupation (1910–1945) and the Korean War (1950–1953), extensive areas of forest were severely degraded by over-harvesting and fire in Korea. In addition, intensive use of the forest-resources to obtain fuel, organic compost, livestock feed, and so on contributed [...] Read more.
During the period of Japanese occupation (1910–1945) and the Korean War (1950–1953), extensive areas of forest were severely degraded by over-harvesting and fire in Korea. In addition, intensive use of the forest-resources to obtain fuel, organic compost, livestock feed, and so on contributed to forest degradation. As a result, the South Korean government launched large-scale tree planting projects to reforest the denuded mountains particularly in the 1960s. This study aims to evaluate the restoration effects of the pitch pine (Pinus rigida Mill.) plantations and further diagnose the invasive potential of the pitch pine. To arrive at the goals, we investigated the changes of vegetation and soil characteristics in different chronosequences in the pitch pine plantations and in native forests, which were selected as reference stands. Pitch pine plantations were usually planted on mountainous land, which is characterized by an elevation of below 300 m above sea level and a gentle slope below 20°. The species composition of the pitch pine forestations was different depending on the study site but tended to resemble that of the reference stands in the years after forestation. The species diversity showed an increasing trend in response to stand age. The frequency distribution of diameter classes of dominant tree species showed a trend for pitch pine plantations to succeed to native oak stands. A change in canopy profiles depending on stand age also proved the successional trend. The establishment and development of pitch pine plantations for reforestation contributed to erosion control and improved the physic-chemical properties of the soil and thus prepared a basis for the recovery of native vegetation. Such changes in vegetation and soil confirmed that the pitch pine plantations successfully achieved the restoration goals. On the other hand, mature pitch pine stands reproduced young pitch pine stands by self-seeding on the slopes of various sorts of roads including expressways. This shows that pitch pine is successfully established in Korea and thereby the species has been naturalized. However, the natural succession of pitch pine stands in Korea suggests that it is possible to introduce some exotic species for reforestation without resulting in uncontrolled invasion. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Article
Multiple Stable Dominance States in the Congo Basin Forests
Forests 2020, 11(5), 553; https://doi.org/10.3390/f11050553 - 14 May 2020
Cited by 4 | Viewed by 1242
Abstract
Understanding the dynamics of dominant tree species in tropical forests is important both for biodiversity and carbon-related issues. We focus on the Congo Basin (East of Kisangani) to investigate the respective roles of topographic/soil gradients and endogenous dynamics in shaping local variations in [...] Read more.
Understanding the dynamics of dominant tree species in tropical forests is important both for biodiversity and carbon-related issues. We focus on the Congo Basin (East of Kisangani) to investigate the respective roles of topographic/soil gradients and endogenous dynamics in shaping local variations in dominance. We used a dataset of 30 1-ha plots, in which all trees above 10 cm diameter at breast height (DBH) were censused. Soil samples were analyzed for standard pedologic variables and a digital elevation model permitted to infer topography and hydromorphy. We found that this forest is characterized by variations in the abundance of three dominant species: Petersianthus macrocarpus (P.Beauv.) Liben (PM), Gilbertiodendron dewevrei (De Wild.) J.Leonard (GD) and Julbernardia seretii (De Wild.) Troupin (JS). These variations occur independently of substratum or topography variations. At plot level, the local relative abundance never reached 50%, the threshold for monodominance proposed in the literature, but rather progressively increased to reach higher values for canopy trees (>60 cm DBH), where this threshold could be exceeded. We found no sign of shifting compositional dynamics, whereby the dominant species would switch between the canopy and the undergrowth. Our results, therefore, support the possibility of the existence of stable dominance states, induced by endogenous processes, such as biological positive feedbacks fostering monodominance. We also document a strong relation between monodominance level and alpha diversity, when giving more weight to abundant species which is expected (R² = 0.79) but also when giving more weight to rare species (R² = 0.37), showing that monodominance influences tree species richness patterns. Structural differences existed between groups, with the PM group having more (and on average smaller) stems and lighter wood on average, but paradoxically also higher biomass and basal area. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Article
Sustainability of High-Value Timber Species in Mixed Conifer–Broadleaf Forest Managed under Selection System in Northern Japan
Forests 2020, 11(5), 484; https://doi.org/10.3390/f11050484 - 25 Apr 2020
Cited by 2 | Viewed by 1615
Abstract
Understanding the sustainability of high-value timber species in managed forests provides useful information for the management of these species in the long-run. Using nearly 50 years of census data in long-term permanent plots, we investigated the sustainability of three high-value timber species—monarch birch [...] Read more.
Understanding the sustainability of high-value timber species in managed forests provides useful information for the management of these species in the long-run. Using nearly 50 years of census data in long-term permanent plots, we investigated the sustainability of three high-value timber species—monarch birch (Betula maximowicziana Regel), castor aralia (Kalopanax septemlobus (Thunb.) Koidz), and Japanese oak (Quercus crispula Blume)—in cool-temperate mixed forest under a selection system in northern Japan. We used stocking, demographic parameters, and species proportions of these species as measures of sustainability. Results showed that the tree density and basal area of the three high-value timber species increased during the study period. Moreover, the basal area increment of these species showed an increasing trend across census periods. However, while no significant differences in the tree mortality of these species were observed, the numbers of in-growth fluctuated across census periods. Increasing trends in species proportions of monarch birch and Japanese oak were observed. Even though there were some fluctuations across census periods, especially in smaller diameter classes, diameter distribution curves of high-value timber species followed a reversed J-shaped pattern. The results revealed that the sustainability measures of high-value timber species can be achieved in forest stands managed under single-tree selection system. In addition, the results also indicated the changing structure and composition of the forest stand. The stocking and basal area increment of conifers decreased while those of broadleaves increased. The proportion of conifers decreased to 33.01% in 2008–2016 from 48.35% in 1968–1978. The results of this study would be useful for adapting silvicultural practices and harvesting practices as well as for simulating various silvicultural and management options for high-value timber species. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Article
Changes of Tree Species Composition and Distribution Patterns in Mts. Jiri and Baegun, Republic of Korea over 15 Years
Forests 2020, 11(2), 186; https://doi.org/10.3390/f11020186 - 07 Feb 2020
Cited by 1 | Viewed by 1072
Abstract
Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated the changes in tree species composition in temperate mountainous forests using survey data from 130 permanent plots (0.1 ha) from the [...] Read more.
Long-term changes in the abundance and distribution of tree species in the temperate forests of South Korea remain poorly understood. We investigated the changes in tree species composition in temperate mountainous forests using survey data from 130 permanent plots (0.1 ha) from the past 15 years (1998–2012) distributed across Mts. Jiri and Baegun, South Korea. The tree communities showed positive net changes in terms of stand density, richness, diversity, and evenness. At the species level, the change in relative species composition has been mainly driven by species such as Quercus mongolica, Carpinus laxiflora, Quercus serrata, Quercus variabilis, Styrax japonicus, Lindera erythrocarpa, and Pinus densiflora. These changes were categorized into five groups representing gradual increase or decrease, establishment, extinction, or fluctuation in species populations. At the community level, the changes in species composition showed consistent and directional increases in the annual rate of change for the mean species traits, including stand prevalence, pole growth rate, adult growth rate, and adult stature. Based on additive models, topographic variables (elevation, latitude, longitude, slope, topographic wetness index, and curvature) were more strongly associated with the distribution of species diversity than climate variables (annual mean minimum and maximum temperatures, temperature seasonality, annual rainfall, rainfall seasonality). Elevation was the most significant driver, followed by latitude and longitude. This study reveals the dynamics of change in tree species composition and distribution along topographical and climate gradients in South Korea and contributes to a broader understanding of temperate forest ecosystems for the purpose of better forest management. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Article
Expansion of Eastern Redcedar (Juniperus virginiana L.) into the Deciduous Woodlands within the Forest–Prairie Ecotone of Kansas
Forests 2020, 11(2), 154; https://doi.org/10.3390/f11020154 - 30 Jan 2020
Cited by 3 | Viewed by 1541
Abstract
North America’s midcontinent forest–prairie ecotone is currently exhibiting extensive eastern redcedar (ERC) (Juniperus virginiana L.) encroachment. Rapid expansion of ERC has major impacts on the species composition and forest structure within this region and suppresses previously dominant oak (Quercus) species. [...] Read more.
North America’s midcontinent forest–prairie ecotone is currently exhibiting extensive eastern redcedar (ERC) (Juniperus virginiana L.) encroachment. Rapid expansion of ERC has major impacts on the species composition and forest structure within this region and suppresses previously dominant oak (Quercus) species. In Kansas, the growing-stock volume of ERC increased by 15,000% during 1965–2010. The overarching goal of this study was to evaluate the spatio-temporal dynamics of ERC in the forest–prairie ecotone of Kansas and understand its effects on deciduous forests. This was achieved through two specific objectives: (i) characterize an effective image classification approach to map ERC expansion, and (ii) assess ERC expansion between 1986 and 2017 in three study areas within the forest–prairie ecotone of Kansas, and especially expansion into deciduous forests. The analysis was based on satellite imagery acquired by Landsat TM and OLI sensors during 1986–2017. The use of multi-seasonal layer-stacks with a Support Vector Machine (SVM)-supervised classification was found to be the most effective approach to classify ERC distribution with high accuracy. The overall accuracies for the change maps generated for the three study areas ranged between 0.95 (95 CI: ±0.02) and 0.96 (±0.03). The total ERC cover increased in excess of 6000 acres in each study area during the 30-year period. The estimated percent increase of ERC cover was 139%, 539%, and 283% for the Tuttle Creek reservoir, Perry reservoir, and Bourbon County north study areas, respectively. This astounding rate of expansion had significant impacts on the deciduous forests where the conversion of deciduous woodlands to ERC, as a percentage of the total encroachment, were 48%, 56%, and 71%, for the Tuttle Creek reservoir, Perry reservoir, and Bourbon County north study areas, respectively. These results strongly affirm that control measures should be implemented immediately to restore the threatened deciduous woodlands of the region. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Article
Disturbance History and Dynamics of an Old-Growth Nothofagus Forest in Southern Patagonia
Forests 2020, 11(1), 101; https://doi.org/10.3390/f11010101 - 14 Jan 2020
Cited by 1 | Viewed by 932
Abstract
The identification of disturbance events using disturbance chronologies has become a valuable tool in reconstructing disturbance history in temperate forests worldwide; yet detailed reconstructions of disturbance history and their effect on the structure and dynamics of the old-growth Nothofagus forests in the southern [...] Read more.
The identification of disturbance events using disturbance chronologies has become a valuable tool in reconstructing disturbance history in temperate forests worldwide; yet detailed reconstructions of disturbance history and their effect on the structure and dynamics of the old-growth Nothofagus forests in the southern Patagonia are scarce. We reconstructed forest dynamics and disturbance history of an old-growth N. pumilio forest in the Toro River Valley, Santa Cruz, Argentina using dendroecological techniques. Since a variation in the disturbance regimes was expected with changing elevation, we sampled at different elevations. We found distinct differences in forest structure, dynamics, and disturbance history with changes in the elevation. The disturbance chronologies provided robust evidence that forests in the study area have been subjected to multiple disturbance events over the last 200 years. Yet, recognizing the agent of disturbance could be difficult in these montane forests and further studies are required. Moreover, disturbances might have varied from frequent, moderate- to high-severity events to less frequent and more severe events. This study represents the first of its kind for the temperate forests of Patagonia. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Article
Dynamics of Abies nephrolepis Seedlings in Relation to Environmental Factors in Seorak Mountain, South Korea
Forests 2019, 10(8), 702; https://doi.org/10.3390/f10080702 - 19 Aug 2019
Cited by 1 | Viewed by 1312
Abstract
We present novel evidence of environmental drivers of seedling density in Abies nephrolepis, an alpine and subalpine tree species. Continuous monitoring of natural conditions is required to understand forest ecosystem dynamics. We investigated Abies nephrolepis seedling dynamics in relation to biotic and [...] Read more.
We present novel evidence of environmental drivers of seedling density in Abies nephrolepis, an alpine and subalpine tree species. Continuous monitoring of natural conditions is required to understand forest ecosystem dynamics. We investigated Abies nephrolepis seedling dynamics in relation to biotic and abiotic factors. The survey, which included the measurement of trees and seedlings, was carried out from March to October in 2016 and 2018. Monitoring sites in the coniferous forests of Seorak Mountain were divided into 27 quadrats. We analyzed relationships using simple and multiple linear regression. The majority of Abies nephrolepis individuals had a diameter at breast height less than l0 cm, and the number of seedlings increased over the study period. This reflects survival and growth due to successive annual mast seeding events. Aspect direction (R2 = 0.201, p < 0.05), rock exposure (R2 = 0.364, p < 0.001), canopy openness (R2 = 0.322, p < 0.05), herbaceous cover (R2 = 0.268, p < 0.01), and basal area (R2 = 0.199, p < 0.05) show significant linear relationships with seedling density. Seedling density was positively related to rock exposure, canopy openness, and species richness, and there was a negative relationship between herbaceous cover and basal area (p < 0.0001). The relative importance of predictor variables was as follows: Rock exposure (40.3%), canopy openness (30.2%), basal area (13.9%), herbaceous cover (11.5%), and species richness (4.1%). Seedling density was most strongly influenced by the presence of large rocks, which provide shelter from harsh winds and a substrate for moss. We conclude that appropriate canopy openness creates a synergistic relationship. We found a positive association between the Abies nephrolepis seedling density in subalpine forests and certain physical environmental factors. Therefore, environmental gradients about the roles of rocks and canopies apply, even in this habitat. Full article
(This article belongs to the Special Issue Forest Stand Dynamics and Its Applications)
Show Figures

Figure 1

Back to TopTop