Exploring the Possibility of Ionic Liquid as a Dimensional Stabilizer for Well-Preserved Waterlogged Archaeological Wood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Molecular Dynamics (MD) Simulation
2.3. Impregnation of Ionic Liquid and Polyethylene Glycol
2.4. Shrinkage Measurement
2.5. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.6. Dynamic Vapor Sorption (DVS)
3. Results and Discussion
3.1. Theoretical Investigation of the Swelling of Cellulose by IL–Water Mixtures
3.2. Dimensional Stability of Well-Preserved WAW Treated with Stabilizing Agents
3.3. FTIR Analysis
3.4. Hygroscopicity of WAW Treated by IL
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Björdal, C.G.; Nilsson, T.; Daniel, G. Microbial decay of waterlogged archaeological wood found in Sweden Applicable to archaeology and conservation. Int. Biodeterior. Biodegrad. 1999, 43, 63–73. [Google Scholar] [CrossRef]
- Blanchette, R.A. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 2000, 46, 189–204. [Google Scholar] [CrossRef]
- Hocker, E.; Almkvist, G.; Sahlstedt, M. The vasa experience with polyethylene glycol: A conservator’s perspective. J. Cult. Herit. 2013, 13, S175–S182. [Google Scholar] [CrossRef]
- Kılıç, N.; Kılıç, A.G. Evaluation of the Polyethylene Glycol Impregnation and Vacuum Freeze-Drying Method for Waterlogged Archaeological Wood: Conservation of the Yenikapı 1 Shipwreck. Stud. Conserv. 2023, 69, 336–347. [Google Scholar] [CrossRef]
- Liu, X.; Tu, X.; Ma, W.; Zhang, C.; Huang, H.; Varodi, A.M. Consolidation and Dehydration of Waterlogged Archaeological Wood from Site Huaguangjiao No.1. Forests 2022, 13, 1919. [Google Scholar] [CrossRef]
- Babiński, L. Dimensional changes of waterlogged archaeological hardwoods pre-treated with aqueous mixtures of lactitol/trehalose and mannitol/trehalose before freeze-drying. J. Cult. Herit. 2015, 16, 876–882. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, L.; Zhang, B.; Hu, Y. A comparative study of reinforcement materials for waterlogged wood relics in laboratory. J. Cult. Herit. 2018, 36, 94–102. [Google Scholar] [CrossRef]
- Tahira, A.; Howard, W.; Pennington, E.R.; Kennedy, A. Mechanical strength studies on degraded waterlogged wood treated with sugars. Stud. Conserv. 2017, 62, 223–228. [Google Scholar] [CrossRef]
- Kennedy, A.; Pennington, E.R. Conservation of chemically degraded waterlogged wood with sugars. Stud. Conserv. 2014, 59, 194–201. [Google Scholar] [CrossRef]
- Endo, R.; Sugiyama, J. New attempts with the keratin-metal/magnesium process for the conservation of archaeological waterlogged wood. J. Cult. Herit. 2022, 54, 53–58. [Google Scholar] [CrossRef]
- Endo, R.; Kamei, K.; Iida, I.; Yokoyama, M.; Kawahara, Y. Physical and mechanical properties of waterlogged wood treated with hydrolyzed feather keratin. J. Archaeol. Sci. 2010, 37, 1311–1316. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Hu, D. An aqueous approach to functionalize waterlogged archaeological wood followed by improved surface-initiated ARGET ATRP for maintaining dimensional stability. Cellulose 2021, 28, 2433–2443. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, K.; Hu, D. Surface-initiated arget atrp for maintaining the dimension of waterlogged archaeological wood (pinus massoniana): Polymer distribution behaviors and anti-shrinkage mechanism. Wood Sci. Technol. 2022, 56, 205–218. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Wang, K.; Hu, D. Well-controlled SI-ARGET ATRP of EGDMA for maintaining the dimensions of waterlogged archaeological wood. Wood Sci. Technol. 2023, 57, 523–535. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B. Application of methyltrimethoxysilane to increase dimensional stability of waterlogged wood. J. Cult. Herit. 2017, 25, 149–156. [Google Scholar] [CrossRef]
- Broda, M.; Mazela, B.; Dutkiewicz, A. Organosilicon compounds with various active groups as consolidants for the preservation of waterlogged archaeological wood. J. Cult. Herit. 2019, 35, 123–128. [Google Scholar] [CrossRef]
- Broda, M.; Yelle, D.J. Reactivity of Waterlogged Archaeological Elm Wood with Organosilicon Compounds Applied as Wood Consolidants: 2D 1H-13C Solution-State NMR Studies. Molecules 2022, 27, 3407. [Google Scholar] [CrossRef]
- Li, S.; Zeng, Y.; Zhou, L.; Feng, N.; Li, C.; Sheng, L.; Li, Y.; Sun, J. Consolidation of waterlogged archaeological woods by reversibly cross-linked polymers. J. Archaeol. Sci. Rep. 2024, 57, 104675. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, Y.; Kan, L.; Wang, Y.; Wang, K.; Hu, D. Aqueous modification of waterlogged archaeological wood by phenylboronic acid to reduce hygroscopicity and improve the dimensional stability. Wood Sci. Technol. 2024, 58, 941–957. [Google Scholar] [CrossRef]
- Collett, H.; Bouville, F.; Giuliani, F.; Schofield, E. Structural Monitoring of a Large Archaeological Wooden Structure in Real Time, Post PEG Treatment. Forests 2021, 12, 1788. [Google Scholar] [CrossRef]
- Penttilä, P.A.; Altgen, M.; Awais, M.; Österberg, M.; Rautkari, L.; Schweins, R. Bundling of cellulose microfibrils in native and polyethylene glycol-containing wood cell walls revealed by small-angle neutron scattering. Sci. Rep. 2020, 10, 20844. [Google Scholar] [CrossRef] [PubMed]
- Pan, L.; Gu, J.D. Characterization of aerobic bacteria involved in degrading polyethylene glycol (peg)-3400 obtained by plating and enrichment culture techniques. J. Polym. Environ. 2007, 15, 57–65. [Google Scholar] [CrossRef]
- Glastrup, J.; Shashoua, Y.; Egsgaard, H.; Mortensen, M.N. Degradation of peg in the warship vasa. Macromol. Symp. 2006, 238, 22–29. [Google Scholar] [CrossRef]
- Fincher, E.L.; Payne, W.J. Bacterial utilization of ether glycols. Appl. Microbiol. 1962, 10, 542–547. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Berton, P. Ionic Liquids as Designed, Multi-Functional Plasticizers for Biodegradable Polymeric Materials: A Mini-Review. Intern. J. Molecul. Sci. 2024, 25, 1720. [Google Scholar] [CrossRef]
- Huo, F.; Liu, Z.; Wang, W. Cosolvent or Antisolvent? A Molecular View of the Interface between Ionic Liquids and Cellulose upon Addition of Another Molecular Solvent. J. Phys. Chem. B 2013, 117, 11780–11792. [Google Scholar] [CrossRef]
- Liu, H.; Sale, K.L.; Simmons, B.A.; Singh, S. Molecular Dynamics Study of Polysaccharides in Binary Solvent Mixtures of an Ionic Liquid and Water. J. Phys. Chem. B 2011, 115, 10251–10258. [Google Scholar] [CrossRef] [PubMed]
- Parthasarathi, R.; Balamurugan, K.; Shi, J.; Subramanian, V.; Simmons, B.A.; Singh, S. Theoretical insights into the role of water in the dissolution of cellulose using IL/water mixed solvent systems. J. Phys. Chem. B 2015, 119, 14339–14349. [Google Scholar] [CrossRef]
- Han, L.; Guo, J.; Tian, X.; Jiang, X.; Yin, Y. Evaluation of peg and sugars consolidated fragile waterlogged archaeological wood using nanoindentation and atr-ftir imaging. Int. Biodeterior. Biodegrad. 2022, 170, 105390. [Google Scholar] [CrossRef]
- Cheng, J.; Yang, J.; Liu, P. Timber Log of China; China Forestry Publishing House: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Liu, W.; Shomali, A.; Zhang, C.; Coasne, B.; Carmeliet, J.; Derome, D. Nanostructure and interfacial mechanical properties of PEG/cellulose nanocomposites studied with molecular dynamics. Carbohydr. Polym. 2024, 343, 122429. [Google Scholar] [CrossRef] [PubMed]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Darden, T.A.; York, D.M.; Pedersen, L.G. Particle mesh Ewald-an N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 1992, 98, 10089–10092. [Google Scholar] [CrossRef]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A linear constraint solver for molecular simulations. J. Chem. Theory Comput. 1997, 4, 1463–1472. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Martonák, R.; Laio, A.; Parrinello, M. Predicting Crystal Structures: The Parrinello-Rahman Method Revisited. Phys. Rev. Lett. 2003, 90, 075503. [Google Scholar] [CrossRef]
- Bardet, M.; Gerbaud, G.; Doan, C.; Giffard, M.; Hediger, S.; De Paëpe, G.; Trân, Q.-K. Dynamics property recovery of archaeological-wood fibers treated with polyethylene glycol demonstrated by high-resolution solid-state NMR. Cellulose 2012, 19, 1537–1545. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Liu, S.; Sun, C.; Li, J.; Sun, Y.; Zhang, C.; Sun, S.; Yu, Q.; Yu, B.; et al. Lubrication and antibacterial performance and mechanism of functionalized ionic liquids in glycerol media with different water contents. Tribol. Int. 2025, 202, 110307. [Google Scholar] [CrossRef]
- Gao, C.; Qu, X.; Fu, L.; Chen, J.; Chu, Y.; Qiu, H. Ionic liquid-derived carbon dots with enhanced antibacterial activity and antibiofilm capability for treatment of MRSA-infected wounds. Chem. Eng. J. 2024, 497, 154717. [Google Scholar] [CrossRef]
- Miyafuji, H.; Fujiwara, Y. Fire resistance of wood treated with various ionic liquids (ILs). Holzforschung 2013, 67, 787–793. [Google Scholar] [CrossRef]
- Kopač, L.; Scharf, A.; Lin, C.; Sandberg, D.; Medved, S.; Jones, D. Investigation into a bio-based adhesive in combination with fire retardants for particleboard manufacture. Wood Mater. Sci. Eng. 2024, in press.
- Zhou, Y.; Wang, K.; Chen, X.; Hu, D. Alterations in the anatomy and chemical structure of archaeological wood from a tomb of northern china due to different fungal rots. Wood Res. 2020, 65, 757–770. [Google Scholar] [CrossRef]
- Pandey, K.K.; Pitman, A.J. FTIR studies of the changes in wood chemistry following decay by brown-rot and white-rot fungi. Int. Biodeterior. Biodegrad. 2003, 52, 151–160. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Zhang, Z.; Wang, K.; Jin, T.; Feng, Y.; Wu, M.; Han, X.; Han, L.; Wang, J. Exploring the Possibility of Ionic Liquid as a Dimensional Stabilizer for Well-Preserved Waterlogged Archaeological Wood. Forests 2024, 15, 2160. https://doi.org/10.3390/f15122160
Zhou Y, Zhang Z, Wang K, Jin T, Feng Y, Wu M, Han X, Han L, Wang J. Exploring the Possibility of Ionic Liquid as a Dimensional Stabilizer for Well-Preserved Waterlogged Archaeological Wood. Forests. 2024; 15(12):2160. https://doi.org/10.3390/f15122160
Chicago/Turabian StyleZhou, Yihang, Zhiguo Zhang, Kai Wang, Tao Jin, Yi Feng, Mengruo Wu, Xiangna Han, Liuyang Han, and Jiajun Wang. 2024. "Exploring the Possibility of Ionic Liquid as a Dimensional Stabilizer for Well-Preserved Waterlogged Archaeological Wood" Forests 15, no. 12: 2160. https://doi.org/10.3390/f15122160
APA StyleZhou, Y., Zhang, Z., Wang, K., Jin, T., Feng, Y., Wu, M., Han, X., Han, L., & Wang, J. (2024). Exploring the Possibility of Ionic Liquid as a Dimensional Stabilizer for Well-Preserved Waterlogged Archaeological Wood. Forests, 15(12), 2160. https://doi.org/10.3390/f15122160