energies-logo

Journal Browser

Journal Browser

Planning, Operation, and Control of New Power Systems: 2nd Edition

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "F: Electrical Engineering".

Deadline for manuscript submissions: 15 December 2025 | Viewed by 1298

Special Issue Editors


E-Mail Website
Guest Editor
School of Automation, Wuhan University of Technology, Wuhan 430070, China
Interests: power system security risk assessment; optimal planning and operation of energy internet; interaction between electric vehicles and power grid
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Electrical Engineering, Wuhan University, Wuhan 430072, China
Interests: power system operation and control with a high proportion of new energy
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
Interests: integration of distributed energy resources (DERs) and the development of advanced methodologies for enhancing grid resilience, efficiency, and flexibility; decentralized energy systems; demand-side management; the application of artificial intelligence and machine learning in optimizing power systems
Special Issues, Collections and Topics in MDPI journals
BEEE, The Hong Kong Polytechnic University, Hong Kong, China
Interests: reliability and resiliency of distribution systems under increasingly frequent and serious natural disasters; high penetration of renewable energy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The global energy landscape is undergoing a profound transformation driven by the rapid advancement and integration of communication technologies, multi-energy systems, and distributed power generation. As the adoption of new power systems accelerates, they are playing a critical role in reshaping energy structures and supporting the transition toward cleaner, more resilient, and more intelligent energy networks.

With the proposal of a carbon neutrality goal and the continuous improvement of the penetration rate of renewable energy, traditional optimization methods face growing challenges.  New power systems demand advanced, adaptive solutions to navigate their inherent complexity and support intelligent decision-making. Meanwhile, the continuous refinement of electricity and carbon market mechanisms necessitates stricter requirements for the planning and operation of new power systems.

This 2nd Edition of the Special Issue invites original research articles and comprehensive reviews that address emerging methods, models, and technologies for the optimal planning, operation, and control of new power systems.

Dr. Hui Hou
Dr. Siyang Liao
Dr. Yunqi Wang
Dr. Ying Du
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • new power systems
  • carbon neutral carbon peak
  • optimal planning, operation, and control

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

47 pages, 14121 KB  
Article
Systematic Development and Hardware-in-the-Loop Testing of an IEC 61850 Standard-Based Monitoring and Protection System for a Modern Power Grid Point of Common Coupling
by Sinawo Nomandela, Mkhululi E. S. Mnguni and Atanda K. Raji
Energies 2025, 18(19), 5281; https://doi.org/10.3390/en18195281 - 5 Oct 2025
Viewed by 542
Abstract
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the [...] Read more.
This paper presents a systematic approach to the development and validation of a monitoring and protection system based on the IEC 61850 standard, evaluated through hardware-in-the-loop (HIL) testing. The study utilized an already existing model of a modern power grid consisting of the IEEE 9-bus power system integrated with a large-scale wind power plant (LSWPP). The SEL-487B Relay was configured to protect the PCC using a low-impedance busbar differential monitoring and protection system equipped with adaptive setting group logic that automatically transitions between Group 1 and Group 2 based on system loading conditions. Significant steps were followed for selecting and configuring instrument transformers and implementing relay logic in compliance with IEEE and IEC standards. Real-time digital simulation using Real-Time Digital Simulator (RTDS) hardware and its software, Real-time Simulation Computer-Aided Design (RSCAD), was used to assess the performance of the overall monitoring and protection system, focusing on the monitoring and publishing of the selected electrical and mechanical measurements from a selected wind turbine generator unit (WTGU) on the LSWPP side through the IEC 61850 standard network, and on the behavior of the monitoring and protection system under initial and increased load conditions through monitoring of differential and restraint currents. The overall monitoring and protection system was tested under both initial and increased load conditions, confirming its capability to reliably publish analog values from WTGU13 for availability on the IEC 61850 standard network while maintaining secure protection operation. Quantitatively, the measured differential (operate) and restraint currents were 0.32 PU and 4.38 PU under initial loading, and 1.96 PU and 6.20 PU under increased loading, while total fault clearance times were 606.667 ms and 706.667 ms for faults under initial load and increased load demand conditions, respectively. These results confirm that the developed framework provides accurate real-time monitoring and reliable operation for faults, while demonstrating a practical and replicable solution for monitoring and protection at transmission-level PCCs within renewable-integrated networks. Full article
(This article belongs to the Special Issue Planning, Operation, and Control of New Power Systems: 2nd Edition)
Show Figures

Figure 1

22 pages, 10816 KB  
Article
Research on the Security Scenario Simulation and Evolution Path of China’s Power System Based on the SWITCH-China Model
by Qin Wang, Lang Tang, Yuanzhe Zhu, Jincan Zeng, Xi Liu, Rongfeng Deng, Binghao He, Guori Huang, Minwei Liu and Peng Wang
Energies 2025, 18(18), 4806; https://doi.org/10.3390/en18184806 - 9 Sep 2025
Viewed by 521
Abstract
Accelerated climate warming has led to the frequent occurrence of extreme weather events, resulting in high-frequency, large-scale, and highly destructive power outages and electricity shortages, which serve as a wake-up call for the safe and stable operation of the power system. To predict [...] Read more.
Accelerated climate warming has led to the frequent occurrence of extreme weather events, resulting in high-frequency, large-scale, and highly destructive power outages and electricity shortages, which serve as a wake-up call for the safe and stable operation of the power system. To predict safety risks, this study constructs a baseline scenario and five power security scenarios based on the SWITCH-China model, systematically assessing the impact of external shocks on the power system’s evolution path and carbon reduction economics. The results indicate that external shocks are the key factors influencing the power system’s installed capacity structure and generation mix. The increase in demand forces the substitution of non-fossil energy. In the demand growth scenario, by 2060, wind and solar installed capacity will be 1.034 billion kilowatts higher than in the baseline scenario. Rising fuel costs will accelerate the exit of fossil fuel units. In the fuel cost increase scenario, 765 million kilowatts of coal power were reduced cumulatively across three time points. Wind and solar outages, along with transmission failures, lead to significant local economic investments while also causing inter-provincial carbon transfer. In the wind and solar outage scenario, provinces with a high proportion of wind and solar, such as Guangdong and Guizhou, see an increase in carbon emissions of 31 million tons and 8 million tons, respectively. Conversely, provinces with a lower proportion of wind and solar, such as Inner Mongolia and Xinjiang, reduce carbon emissions by 46 million tons and 39 million tons, respectively. Energy storage development supports the expansion of non-fossil energy in the power system. The study recommends accelerating wind and solar deployment, building a storage system at the scale of hundreds of billions of kilowatt-hours, and optimizing the inter-provincial transmission network to address the dual challenges of power security and carbon neutrality. Full article
(This article belongs to the Special Issue Planning, Operation, and Control of New Power Systems: 2nd Edition)
Show Figures

Figure 1

Back to TopTop