Research on the Security Scenario Simulation and Evolution Path of China’s Power System Based on the SWITCH-China Model
Abstract
1. Introduction
2. SWITCH-China Model
2.1. Model Mechanism
2.2. Objective Function
2.3. Constraints
3. Scenario Setup and Input Parameters
3.1. Scenario Setup
3.2. Input Parameters
3.2.1. No Wind and No Sunlight Events
3.2.2. Electrical Demand Parameters
3.2.3. Fuel Cost Parameters
3.2.4. Line Fault Parameters
3.2.5. Constraints on Energy Storage Development
4. Results Analysis
4.1. Installed Capacity and Generation
4.2. Output Simulation
4.3. Inter-Provincial Transmission Simulation
4.4. Interprovincial Carbon Emission Transfer
4.5. Emission Reduction Costs and Levelized Cost of Electricity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, J.; Kang, J.; Zhang, J.; Zhang, K.; Zhang, W.; Meng, Z.; Qiu, Y.; Wu, R.; Wu, D. The Climate Change and Energy Transition Project of the Energy Research Institute at Peking University: Research on the Peak Path and Policies of Carbon Emissions in the Power Sector; North China Electric Power University: Beijing, China, 2021. [Google Scholar]
- He, Y.; Xing, Y.; Zeng, X.; Ji, Y.; Hou, H.; Zhang, Y.; Zhu, Z. Factors Influencing Carbon Emissions from China’s Electricity Industry: Analysis Using the Combination of LMDI and K-Means Clustering. Environ. Impact Assess. Rev. 2022, 93, 106724. [Google Scholar] [CrossRef]
- Xu, L.; Feng, K.; Lin, N.; Perera, A.T.D.; Poor, H.V.; Xie, L.; Ji, C.; Sun, X.A.; Guo, Q.; O’Malley, M. Resilience of Renewable Power Systems under Climate Risks. Nat. Rev. Electr. Eng. 2024, 1, 53–66. [Google Scholar] [CrossRef]
- Qi, Y.; Lu, J.; Liu, T. Measuring Energy Transition Away from Fossil Fuels: A New Index. Renew. Sustain. Energy Rev. 2024, 200, 114546. [Google Scholar] [CrossRef]
- Ren, G.; Wang, W.; Wan, J.; Hong, F.; Yang, K. A Novel Metric for Assessing Wind and Solar Power Complementarity Based on Three Different Fluctuation States and Corresponding Fluctuation Amplitudes. Energy Convers. Manag. 2023, 278, 116721. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, J.; Zhang, N.; Wang, P.; Wang, Y.; Fang, C. Droop Coefficient Placements for Grid-Side Energy Storage Considering Nodal Frequency Constraints under Large Disturbances. Appl. Energy 2024, 357, 122444. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, L.; Jin, K.; Xue, X.; Zhou, H. Integration Model and Performance Analysis of Coupled Thermal Energy Storage and Ejector Flexibility Retrofit for 600 MW Thermal Power Units. J. Clean. Prod. 2023, 428, 139337. [Google Scholar] [CrossRef]
- Tian, X.; An, C.; Chen, Z. The Role of Clean Energy in Achieving Decarbonization of Electricity Generation, Transportation, and Heating Sectors by 2050: A Meta-Analysis Review. Renew. Sustain. Energy Rev. 2023, 182, 113404. [Google Scholar] [CrossRef]
- Lau, C.K.; Soliman, A.M.; Albasu, J.; Gozgor, G. Dependence Structures among Geopolitical Risks, Energy Prices, and Carbon Emissions Prices. Resour. Policy 2023, 83, 103603. [Google Scholar] [CrossRef]
- Pu, Y.; Liu, H.; Wang, J.; Hou, Y. Collaborative Scheduling of Port Integrated Energy and Container Logistics Considering Electric and Hydrogen-Powered Transport. IEEE Trans. Smart Grid 2023, 14, 4345–4359. [Google Scholar] [CrossRef]
- Gonçalves, A.C.R.; Costoya, X.; Nieto, R.; Liberato, M.L.R. Extreme Weather Events on Energy Systems: A Comprehensive Review on Impacts, Mitigation, and Adaptation Measures. Sustain. Energy Res. 2024, 11, 4. [Google Scholar] [CrossRef]
- Nyamathulla, S.; Dhanamjayulu, C. A Review of Battery Energy Storage Systems and Advanced Battery Management System for Different Applications: Challenges and Recommendations. J. Energy Storage 2024, 86, 111179. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Du, E.; Fan, C.; Wu, Z.; Yao, Y.; Liu, L.; Zhang, N. A Review and Outlook on Cloud Energy Storage: An Aggregated and Shared Utilizing Method of Energy Storage System. Renew. Sustain. Energy Rev. 2023, 185, 113606. [Google Scholar] [CrossRef]
- Rana, M.M.; Uddin, M.; Sarkar, M.R.; Meraj, S.T.; Shafiullah, G.M.; Muyeen, S.M.; Islam, M.A.; Jamal, T. Applications of Energy Storage Systems in Power Grids with and without Renewable Energy Integration—A Comprehensive Review. J. Energy Storage 2023, 68, 107811. [Google Scholar] [CrossRef]
- Li, B.; Liu, Z.; Wu, Y.; Wang, P.; Liu, R.; Zhang, L. Review on Photovoltaic with Battery Energy Storage System for Power Supply to Buildings: Challenges and Opportunities. J. Energy Storage 2023, 61, 106763. [Google Scholar] [CrossRef]
- Liu, Y.; Peng, M. Research on Peak Load Shifting for Hybrid Energy System with Wind Power and Energy Storage Based on Situation Awareness. J. Energy Storage 2024, 82, 110472. [Google Scholar] [CrossRef]
- Cerna, F.V.; Coêlho, J.K.; Fantesia, M.P.; Naderi, E.; Marzband, M.; Contreras, J. Load Factor Improvement of the Electricity Grid Considering Distributed Energy Resources Operation and Regulation of Peak Load. Sustain. Cities Soc. 2023, 98, 104802. [Google Scholar] [CrossRef]
- Ohba, M.; Kanno, Y.; Bando, S. Effects of Meteorological and Climatological Factors on Extremely High Residual Load and Possible Future Changes. Renew. Sustain. Energy Rev. 2023, 175, 113188. [Google Scholar] [CrossRef]
- Fripp, M. Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renewable Energy. Environ. Sci. Technol. 2012, 46, 6371–6378. [Google Scholar] [CrossRef]
- Johnston, J.; Henriquez-Auba, R.; Maluenda, B.; Fripp, M. Switch 2.0: A Modern Platform for Planning High-Renewable Power Systems. SoftwareX 2019, 10, 100251. [Google Scholar] [CrossRef]
- He, G.; Avrin, A.-P.; Nelson, J.H.; Johnston, J.; Mileva, A.; Tian, J.; Kammen, D.M. SWITCH-China: A Systems Approach to Decarbonizing China’s Power System. Environ. Sci. Technol. 2016, 50, 5467–5473. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, X.; Li, B.; Hidalgo-Gonzalez, P.; Kammen, D.M.; Zou, J.; Wang, K. Immediate Actions on Coal Phaseout Enable a Just Low-Carbon Transition in China’s Power Sector. Appl. Energy 2022, 308, 118401. [Google Scholar] [CrossRef]
- He, G.; Lin, J.; Sifuentes, F.; Liu, X.; Abhyankar, N.; Phadke, A. Rapid Cost Decrease of Renewables and Storage Accelerates the Decarbonization of China’s Power System. Nat. Commun. 2020, 11, 2486. [Google Scholar] [CrossRef]
- Lin, J.; Abhyankar, N.; He, G.; Liu, X.; Yin, S. Large Balancing Areas and Dispersed Renewable Investment Enhance Grid Flexibility in a Renewable-Dominant Power System in China. iScience 2022, 25, 103749. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Y.; Yang, X.; Lu, Z.; He, Y.; Chao, Q. Analysis of Spatial and Temporal Variation Character of Climate Risks of Wind and Solar Resources in China. China Acad. J. Electron. Publ. House 2023, 56, 1–10. [Google Scholar]
- Hawker, G.; Bell, K.; Bialek, J.; MacIver, C. Management of Extreme Weather Impacts on Electricity Grids: An International Review. Prog. Energy 2024, 6, 032005. [Google Scholar] [CrossRef]
- Gkika, A.V.; Zacharis, E.A.; Skikos, D.N.; Lekkas, E.L. Battling the Extreme: Lessons Learned from Weather-Induced Disasters on Electricity Distribution Networks and Climate Change Adaptation Strategies. Hydrol. Res. 2023, 54, 1196–1226. [Google Scholar] [CrossRef]
- Liu, Y.; He, Q.; Shi, X.; Zhang, Q.; An, X. Energy Storage in China: Development Progress and Business Model. J. Energy Storage 2023, 72, 108240. [Google Scholar] [CrossRef]
- Liu, H.; Yang, C.; Liu, J.; Hou, Z.; Xie, Y.; Shi, X. An Overview of Underground Energy Storage in Porous Media and Development in China. Gas Sci. Eng. 2023, 117, 205079. [Google Scholar] [CrossRef]
- Tang, B.; Li, R.; Yu, B.; An, R.; Wei, Y.-M. How to Peak Carbon Emissions in China’s Power Sector: A Regional Perspective. Energy Policy 2018, 120, 365–381. [Google Scholar] [CrossRef]
- Luo, F.; Guo, Y.; Yao, M.; Cai, W.; Wang, M.; Wei, W. Carbon Emissions and Driving Forces of China’s Power Sector: Input-Output Model Based on the Disaggregated Power Sector. J. Clean. Prod. 2020, 268, 121925. [Google Scholar] [CrossRef]
Scenario | Description |
---|---|
Baseline Scenario (S0) | According to the normal operation of the existing power system in each load area |
No Wind and No Sunlight Scenario (S1) | Due to wind and solar weather factors, random events occur such as no sunlight for 4 continuous hours during the day or no wind for 4 continuous hours throughout the day |
Demand Growth Scenario (S2) | Wind and solar output remain normal, while the peak load on the demand side increases |
Fuel Cost Increase Scenario (S3) | Regional fuel costs increase due to changes in local fuel costs and the cost of purchased fuels |
Transmission Line Failure Scenario (S4) | Simulate the reduction in interprovincial transmission line efficiency caused by various events |
Slow Energy Storage Development Scenario (S5) | When wind and solar grow rapidly, the progress of energy storage development is slow |
Region | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Southwest | 14 | 25 | 16 | 8 |
Northwest | 36 | 41 | 49 | 42 |
South | 31 | 38 | 32 | 31 |
Central China | 28 | 33 | 34 | 29 |
East China | 17 | 19 | 22 | 21 |
North China | 15 | 17 | 25 | 18 |
Northeast | 12 | 26 | 18 | 19 |
Region | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Southwest | 0 | 0 | 0 | 0 |
Northwest | 1 | 1 | 0 | 0 |
South | 4 | 0 | 5 | 4 |
Central China | 2 | 1 | 3 | 2 |
East China | 1 | 2 | 3 | 1 |
North China | 2 | 2 | 2 | 1 |
Northeast | 3 | 2 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Tang, L.; Zhu, Y.; Zeng, J.; Liu, X.; Deng, R.; He, B.; Huang, G.; Liu, M.; Wang, P. Research on the Security Scenario Simulation and Evolution Path of China’s Power System Based on the SWITCH-China Model. Energies 2025, 18, 4806. https://doi.org/10.3390/en18184806
Wang Q, Tang L, Zhu Y, Zeng J, Liu X, Deng R, He B, Huang G, Liu M, Wang P. Research on the Security Scenario Simulation and Evolution Path of China’s Power System Based on the SWITCH-China Model. Energies. 2025; 18(18):4806. https://doi.org/10.3390/en18184806
Chicago/Turabian StyleWang, Qin, Lang Tang, Yuanzhe Zhu, Jincan Zeng, Xi Liu, Rongfeng Deng, Binghao He, Guori Huang, Minwei Liu, and Peng Wang. 2025. "Research on the Security Scenario Simulation and Evolution Path of China’s Power System Based on the SWITCH-China Model" Energies 18, no. 18: 4806. https://doi.org/10.3390/en18184806
APA StyleWang, Q., Tang, L., Zhu, Y., Zeng, J., Liu, X., Deng, R., He, B., Huang, G., Liu, M., & Wang, P. (2025). Research on the Security Scenario Simulation and Evolution Path of China’s Power System Based on the SWITCH-China Model. Energies, 18(18), 4806. https://doi.org/10.3390/en18184806