Cryptography and Computer Security

A special issue of Electronics (ISSN 2079-9292). This special issue belongs to the section "Computer Science & Engineering".

Deadline for manuscript submissions: 15 November 2025 | Viewed by 759

Special Issue Editors


E-Mail Website
Guest Editor
School of Cyber Engineering, Xidian University, Xi’an 710071, China
Interests: applied cryptography; data security; security of cloud computing and edge computing; wireless communication security

E-Mail Website
Guest Editor
School of Cyber Engineering, Xidian University, Xi’an 710071, China
Interests: wireless and mobile networks; distributed systems and intelligent terminals with focus on security and privacy issues

Special Issue Information

Dear Colleagues,

With the rapid development of cloud computing, edge computing, big data, artificial intelligence, the Internet of Things, and mobile communication technologies, the development of novel computing platforms, network architectures, and application patterns has increased. However, security issues have become an obstacle to these technologies. The core technology to solve the security problem is cryptography. At present, cryptography has been widely used in various security applications. However, the emergence of quantum computers has brought serious challenges to current key public cryptography. At the same time, many resource-constrained computing platforms have a great demand for lightweight cryptography algorithms. In addition, vulnerabilities in many computing platforms and protocols have also led to attacks on various applications. How to propose more effective anti-quantum cryptography algorithms, lightweight cryptography algorithms, and countermeasures against the vulnerabilities of computer platforms and their protocols has become a challenging problem.

This Special Issue focuses on novel cryptographic algorithms and protocols, computer security and protocol security issues, and all efforts to investigate and address these challenges in current new computing environments.

In particular, topics of interest include but are not limited to the following:

  • Post-quantum cryptography and its applications;
  • Post-quantum cryptographic protocols;
  • Post-quantum blockchain technology;
  • Post-quantum data access control technology;
  • Post-quantum searchable encryption;
  • Post-quantum secure multi-party computing technology;
  • Post-quantum secure storage audit technology;
  • Cryptographic protocol analysis and side channel attack;
  • Lightweight key distribution for IoT environments;
  • Lightweight cryptographic algorithms and cryptographic protocols;
  • Lightweight end-to-end anonymous communication protocol;
  • Computer system security;
  • Computer system anomaly detection;
  • Edge computing equipment for APT detection and protection;
  • Cloud computing intrusion detection;
  • SDN/CDN system and protocol security.

Dr. Jiawei Zhang
Dr. Teng Li
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • applied cryptography
  • post-quantum cryptography
  • lightweight cryptography
  • computer security
  • anomaly detection
  • edge computing security
  • cloud computing security

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 388 KiB  
Article
Anonymous Networking Detection in Cryptocurrency Using Network Fingerprinting and Machine Learning
by Amanul Islam, Nazmus Sakib, Kelei Zhang, Simeon Wuthier and Sang-Yoon Chang
Electronics 2025, 14(11), 2101; https://doi.org/10.3390/electronics14112101 - 22 May 2025
Abstract
Cryptocurrency such as Bitcoin supports anonymous routing (Tor and I2P) due to the application requirements of anonymity and censorship resistance. In permissionless and open networking for cryptocurrency, an adversary can spoof to pretend to use Tor or I2P for anonymity and privacy protection, [...] Read more.
Cryptocurrency such as Bitcoin supports anonymous routing (Tor and I2P) due to the application requirements of anonymity and censorship resistance. In permissionless and open networking for cryptocurrency, an adversary can spoof to pretend to use Tor or I2P for anonymity and privacy protection, while, in reality, it is not using anonymous routing and is forwarding its networking directly to the destination peer to reduce networking overheads. Using profile detection based on deterministic features to detect anonymous routing and false claims is vulnerable to spoofing, especially in permissionless cryptocurrency bypassing registration control. We thus designed and built a method of network fingerprinting, using networking behaviors to detect and classify networking types. We built a network sensor to collect data on an active Bitcoin node connected to the Mainnet and applied supervised machine learning to identify whether a peer node was using IP (direct forwarding without the relays for anonymity protection), Tor, or I2P. Our results show that our scheme is effective in accurately detecting networking types and identifying spoofing attempts through supervised machine learning. We tested our scheme using multiple supervised learning models, specifically CatBoost, Random Forest, and HistGradientBoosting. CatBoost and Random Forest performed best and had comparable accuracy performance in effectively detecting false claims, i.e., they classified the networking types and detected fake claims of Tor usage with 93% accuracy and false claims of I2P with 94% accuracy in permissionless Bitcoin. However, CatBoost-based detection was significantly quicker than Random Forest and HistGradientBoosting in real-time testing and detection. Full article
(This article belongs to the Special Issue Cryptography and Computer Security)
Show Figures

Figure 1

24 pages, 2510 KiB  
Article
Efficient Post-Quantum Cryptography Algorithms for Auto-Enrollment in Public Key Infrastructure
by Rehab Al-Dabbagh, Mohammad Alkhatib and Tahani Albalawi
Electronics 2025, 14(10), 1980; https://doi.org/10.3390/electronics14101980 - 13 May 2025
Viewed by 272
Abstract
The security of the digital certificates used in authenticating network devices relies on cryptographic algorithms like the RSA and ECC, which are vulnerable to quantum attacks. This study addresses the urgent need to secure the Simple Certificate Enrollment Protocol (SCEP), widely used in [...] Read more.
The security of the digital certificates used in authenticating network devices relies on cryptographic algorithms like the RSA and ECC, which are vulnerable to quantum attacks. This study addresses the urgent need to secure the Simple Certificate Enrollment Protocol (SCEP), widely used in PKI-based systems, by integrating post-quantum cryptographic (PQC) algorithms—Dilithium, Falcon, and SPHINCS+. The experimental results show that Dilithium2 (1312 bytes) and Falcon512 (897 bytes) offer the best performance and throughput, with Falcon512 also being the most efficient in terms of the storage consumption. This research represents the first integration of PQC algorithms into the SCEP, establishing a foundation for scalable, quantum-resilient certificate enrollment in future PKI systems. Full article
(This article belongs to the Special Issue Cryptography and Computer Security)
Show Figures

Figure 1

Back to TopTop