Special Issue "Machine Learning: Advances in Models and Applications"

A special issue of Electronics (ISSN 2079-9292). This special issue belongs to the section "Artificial Intelligence".

Deadline for manuscript submissions: 30 April 2022.

Special Issue Editor

Prof. Dr. Grzegorz Dudek
E-Mail Website
Guest Editor
Faculty of Electrical Engineering, Czestochowa University of Technology, 42-201 Częstochowa, Poland
Interests: machine learning; data mining; artificial intelligence; pattern recognition, evolutionary computation, and their application to classification, regression, forecasting and optimization problems
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Machine learning (ML) is one of the most exciting fields of computing today. Over recent decades, ML has become an entrenched part of everyday life and has been successfully used for solving practical problems. The application area of machine learning is very broad, including engineering, industry, business, finance, medicine, and many other domains. ML covers a wide range of learning algorithms including the classical ones such as linear regression, k-nearest neighbors or decision trees, through support vector machines and neural networks, to newly developed algorithms such as deep learning and boosted tree models. In practice, it is quite challenging to properly determine the appropriate architecture and parameters of ML models so that the resulting learner model can achieve sound performance for both learning and generalization. Practical applications of ML bring additional challenges such as dealing with big, missing, distorted and uncertain data. In addition, interpretability is a paramount quality that ML methods should aim to achieve if they are to be applied in practice. Interpretability allows us to understand ML model operation and raises confidence in its results.

This Special Issue focuses on ML models and their applications in a diverse range of fields and problems. Papers are expected reporting substantive results on a wide range of learning methods, discussing conceptualization of a problem, data representation, feature engineering, ML models, critical comparisons with existing techniques and interpretation of results. Specific attention will be given to recently developed ML methods such as deep learning and boosted tree models.

Prof. Dr. Grzegorz Dudek
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Electronics is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1800 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • machine learning
  • neural networks
  • decision trees
  • deep learning
  • data mining
  • natural language processing
  • computer vision
  • supervised learning
  • unsupervised learning
  • reinforcement learning
  • evolutionary computation

Published Papers

This special issue is now open for submission.
Back to TopTop