Special Issue "Selected Papers from Taiwan Association for Academic Innovation, TAAI 2019"

A special issue of Crystals (ISSN 2073-4352). This special issue belongs to the section "Crystalline Materials".

Deadline for manuscript submissions: 31 December 2019.

Special Issue Editors

Guest Editor
Prof. Dr. Chien-Jung Huang

Department of Applied Physics, National University of Kaohsiung, Kaohsiung, Taiwan
Website | E-Mail
Interests: organic solar cell; organic light-emitting diode; nano technology
Guest Editor
Prof. Dr. Yeu-Long Jiang

Department of Electrical Engineering, National Chung Hsing University, Taiwan
E-Mail
Guest Editor
Prof. Fei Yu

College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
E-Mail

Special Issue Information

Dear Colleagues,

On behalf of the Taiwan Association for Academic Innovation, we are pleased to welcome you to the 3rd IEEE and 4th International Conference on Science, Education, Viable Engineering (ICSEVEN) 2019 on April 6–10, 2019, Ho Chi Minh, Vietnam. (URL: http://www.taai.tw/icseven/).

Following the first ICSEVEN held in Guilin, China; the second in Kyoto, Japan; and the third in Zhengzhou, China, the conference continuously aims to foster the growth of research in energy engineering science and technology and its benefits to the community at large in the future. We hope that ICSEVEN 2019 will provide a great platform for academic and industry professionals to have fruitful discussions and to exchange new ideas about recent developments and the latest advances in the interdisciplinary field. It is our pleasure to announce the supportive participation of leading academics and researchers, in their respective areas of focus, from various countries, not only in but also beyond Asia. We invite you to participate in this conference by submitting a paper reflecting your current research and to excel in solar energy-related R&D worldwide.

Participants of the conference are cordially invited to contribute original research papers or reviews to this Special Issue of Crystals.

Prof. Dr. Chien-Jung Huang
Prof. Dr. Yeu-Long Jiang
Prof. Fei Yu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Crystals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solar cell and module technology
  • photovoltaics
  • crystallization and wafering of solar energy system
  • new materials for next generation solar cell

Published Papers (1 paper)

View options order results:
result details:
Displaying articles 1-1
Export citation of selected articles as:

Research

Open AccessArticle
Effects of Sm2O3 and V2O5 Film Stacking on Switching Behaviors of Resistive Random Access Memories
Crystals 2019, 9(6), 318; https://doi.org/10.3390/cryst9060318
Received: 18 April 2019 / Revised: 3 June 2019 / Accepted: 10 June 2019 / Published: 19 June 2019
PDF Full-text (3050 KB) | HTML Full-text | XML Full-text | Supplementary Files
Abstract
In this work, the resistive switching characteristics of resistive random access memories (RRAMs) containing Sm2O3 and V2O5 films were investigated. All the RRAM structures made in this work showed stable resistive switching behavior. The High-Resistance State and [...] Read more.
In this work, the resistive switching characteristics of resistive random access memories (RRAMs) containing Sm2O3 and V2O5 films were investigated. All the RRAM structures made in this work showed stable resistive switching behavior. The High-Resistance State and Low-Resistance State of Resistive memory (RHRS/RLRS) ratio of the RRAM device containing a V2O5/Sm2O3 bilayer is one order of magnitude higher than that of the devices containing a single layer of V2O5 or Sm2O3. We also found that the stacking sequence of the Sm2O3 and V2O5 films in the bilayer structure can affect the switching features of the RRAM, causing them to exhibit both bipolar resistive switching (BRS) behavior and self-compliance behavior. The current conduction mechanisms of RRAM devices with different film structures were also discussed. Full article
Figures

Figure 1

Crystals EISSN 2073-4352 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top