Ceramic-Based Coatings for High-Performance Applications

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Ceramic Coatings and Engineering Technology".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 1156

Special Issue Editor


E-Mail Website
Guest Editor
School of mechanical engineering, Shenyang Jianzhu University, Shenyang 110168, China
Interests: ceramic-based coatings; solid lubricant coatings; tribology of coatings and lubricants; tribology in extreme operating conditions; nanostructures; physical vapor deposition; chemical vapor deposition

Special Issue Information

Dear Colleagues,

Ceramic-based coatings have shown extensive application value in multiple fields due to their unique physical and chemical properties, especially in key industries such as aerospace, automotive manufacturing, energy technology, and medical devices. The aim of this Special Issue is to analyse and publicise the progress and current state of knowledge in the field of ceramic-based coatings and related materials.

The topics of interest for this Special Issue include, but are not restricted to, the following:

  • Chemical, physical, and technological properties of ceramic-based coatings and related materials;
  • Problems and methods of preparation, manufacturing, and application of ceramic-based coatings and related materials;
  • Experimental and processing high-performance coatings with exposure to high temperatures, high stress, and other extreme environment applications;
  • Theoretical and computational modelling of surfaces and interfaces;
  • Recent developments in ceramic-based coatings and related materials;
  • Physical and chemical vapour deposition techniques;
  • Any other aspects of ceramic-based coatings and related materials.

Prof. Dr. Yuhou Wu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ceramic-based coatings
  • preparation methods
  • structural characterizations
  • high-performance applications
  • damage evolution modelling of coatings

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2184 KB  
Article
A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings
by Linwen Wang, Jiawei Wang, Haiyang Lu, Jiyu Du, Xiaoxia Qi, Laixiao Lu and Ziwu Liu
Coatings 2025, 15(7), 826; https://doi.org/10.3390/coatings15070826 - 15 Jul 2025
Viewed by 320
Abstract
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr [...] Read more.
To enhance the high-temperature oxidation resistance of chromium carbide metal ceramic coatings, micro/nanoparticle modification was applied to the alloy binder phase of the typical Cr3C2-NiCr coating. This led to the development of Cr3C2-NiCrCoMo and Cr3C2-NiCrCoMo/nano-CeO2 coatings with superior high-temperature oxidation performance. This study compares the high-temperature oxidation behavior of these coating samples and explores their respective oxidation mechanisms. The results indicate that the addition of CoCrMo improves the compatibility between the oxide film and the coating, enhancing the microstructure and integrity of the oxide film. Compared to Cr3C2-NiCrCoMo coatings, the incorporation of nano-CeO2 promotes the reaction between oxides in the Cr3C2-NiCrCoMo/nano-CeO2 coating, increasing the content of binary spinel phases, reducing thermal stress at the oxide–coating interface, and improving the adhesion strength of the oxide film. As a result, the oxidation rate of the coating is reduced, and its oxidation resistance is improved. Full article
(This article belongs to the Special Issue Ceramic-Based Coatings for High-Performance Applications)
Show Figures

Figure 1

14 pages, 5796 KB  
Article
Investigation of Microstructure and Hydrogen Barrier Behavior in Epoxy Resin-Based Ceramic/Graphene Composite Coatings
by Nongzhao Mao, Heping Wang, Bin Liu, Hongbo Zhao, Lei Wang, Ayu Zhang, Jiarui Deng and Keren Zhang
Coatings 2025, 15(7), 764; https://doi.org/10.3390/coatings15070764 - 27 Jun 2025
Viewed by 634
Abstract
This study addresses the critical challenges of hydrogen permeation and embrittlement in metallic pipelines for hydrogen storage and transportation by developing an epoxy resin-based composite coating with enhanced hydrogen barrier properties. Using cold spray technology, the fabricated coatings with controlled 250–320 μm thicknesses [...] Read more.
This study addresses the critical challenges of hydrogen permeation and embrittlement in metallic pipelines for hydrogen storage and transportation by developing an epoxy resin-based composite coating with enhanced hydrogen barrier properties. Using cold spray technology, the fabricated coatings with controlled 250–320 μm thicknesses incorporating graphene/ceramic composite particles uniformly dispersed in the epoxy matrix. Microstructural characterization revealed dense morphology and excellent interfacial bonding. Electrochemical hydrogen charging tests demonstrated remarkable hydrogen permeation reduction, showing a strong positive correlation between coating thickness and barrier performance. The optimal 320 μm-thick coating achieved a hydrogen content of only 0.28 ± 0.09 ppm, representing an 89% reduction compared to that in uncoated substrates. The superior performance originates from the Al2O3/SiO2 networks providing physical barriers, graphene offering high-surface-area adsorption sites, and MgO chemically trapping hydrogen atoms. Post-charging analysis identified interfacial stress concentration and hydrogen-induced plasticization as primary causes of ceramic particle delamination. This work provides both fundamental insights and practical solutions for designing high-performance protective coatings in long-distance hydrogen pipelines. Full article
(This article belongs to the Special Issue Ceramic-Based Coatings for High-Performance Applications)
Show Figures

Figure 1

Back to TopTop