A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings
Abstract
1. Introduction
2. Materials and Methods
2.1. Powder Feedstock Preparation Followed by Coating Fabrication
2.2. Microstructural Characterization of Coatings
2.3. High-Temperature Oxidation Testing
3. Results and Discussion
3.1. Oxidation Thermodynamics Calculations
3.2. Oxidation Kinetics Analysis
3.3. Microstructure and Phase Composition of Oxide Scale
3.4. Phase Composition and Quantitative Analysis of Oxide Film
3.5. Differences in Oxidation Mechanisms
4. Conclusions
- (1)
- Incorporating CoCrMo enhances the high-temperature oxidation resistance of Cr3C2-NiCr coatings. At lower temperatures (700 °C), the C2 coating shows the best oxidation resistance. At higher temperatures (800–900 °C), the E1 and E2 coatings exhibit better oxidation resistance than the C1 and C2 coatings, with the incorporation of nano-CeO2 further enhancing antioxidant performance.
- (2)
- The addition of CoCrMo and nano-CeO2 significantly enhances the high-temperature oxidation resistance of chromium carbide coatings. The C2 coating exhibited the best oxidation resistance at lower temperatures (700 °C), while the E1 and E2 coatings outperformed the C1 and C2 coatings at higher temperatures (800–900 °C). The oxide films formed on the C1, C2, E1, and E2 coatings were denser and more complete compared to the N0 coating, effectively inhibiting oxygen infiltration and improving oxidation resistance. Additionally, the E1 and E2 coatings, with the incorporation of CeO2, exhibited superior performance due to their enhanced oxide film formation, leading to improved integrity and reduced oxidation rates at high temperatures.
- (3)
- In the case of Ni and Co elements, oxides such as NiO and CoO do not provide protective effects, while reactions between these oxides and Cr2O3 at high temperatures generate stable spinel phases like NiCr2O4 and CoCr2O4. These spinel phases, characterized by good stability and high melting points, improve oxidation resistance by reducing ion diffusion. The addition of CeO2 to the E1 and E2 coatings promotes the formation of these spinel phases by lowering the synthesis temperature, further improving oxidation resistance by reducing ion diffusion rates and increasing the activation energy required for diffusion. Consequently, the incorporation of Co2+, Ni2+, and CeO2 into the coatings results in enhanced high-temperature oxidation resistance.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chatha, S.S.; Sidhu, H.S.; Sidhu, B.S. The Effects of Post-Treatment on the Hot Corrosion Behavior of the HVOF-Sprayed Cr3C2–NiCr Coating. Surf. Coat. Technol. 2012, 206, 4212–4224. [Google Scholar] [CrossRef]
- Feng, Y.; Shan, J.; Zhao, L.; Liu, Z.; Gong, K.; Li, C. Effect of Cr3C2 Content on the Microstructure and Wear Resistance of Fe3Al/Cr3C2 Composites. Coatings 2022, 12, 1980. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, S.; Zhao, J.; Zhao, L.; Liu, Z. Influential Mechanism of Cr3C2 Content and Process Parameters on Crack Generation of Fe3Al/Cr3C2 Composites. Coatings 2023, 13, 1636. [Google Scholar] [CrossRef]
- Fu, L.; Zhou, M.; Gao, Y.; Gan, B.; Du, S.; Zhang, Y.; Song, C.; Hua, L.; Zhang, G. Microstructure, Hardness, and Wear Properties of Hot-Press Sintered Cr3C2/Ni3Al Composites Containing Cr3C2 Particles of Different Sizes. Intermetallics 2024, 175, 108503. [Google Scholar] [CrossRef]
- Zhai, W.; Nan, J.; Sun, L.; Wang, Y.; Wang, S. Preparation, Microstructure, and Interface Quality of Cr3C2-NiCr Cladding Layer on the Surface of Q235 Steel. Coatings 2023, 13, 676. [Google Scholar] [CrossRef]
- Shi, C.; Liu, S.; Irfan; Gong, Q.; Wang, H.; Hu, M. Deposition Mechanisms and Characteristics of Nano-Modified Multimodal Cr3C2–NiCr Coatings Sprayed by HVOF. Rev. Adv. Mater. Sci. 2022, 61, 526–538. [Google Scholar] [CrossRef]
- Mao, K.; Du, Y.; Cao, H.; Peng, Y.; He, G.; Liang, Q.; Tu, J. Effects of Cr3C2 Addition on Microstructure and Corrosion Properties of Cr3C2/15–5PH Composite Coatings on 12Cr13 by Laser Cladding. Mater. Today Commun. 2024, 41, 110375. [Google Scholar] [CrossRef]
- Matthews, S.; Berger, L.-M. Inter-Diffusion between Thermally Sprayed Cr3C2-NiCr Coatings and an Alloy 625 Substrate during Long-Term Exposure at 500 °C, 700 °C and 900 °C. J. Alloys Compd. 2019, 770, 1078–1099. [Google Scholar] [CrossRef]
- Premkumar, K.; Balasubramanian, K.R. Evaluation of Cyclic Oxidation Behavior and Mechanical Properties of Nanocrystalline Composite HVOF Coatings on SA 210 Grade C Material. Eng. Fail. Anal. 2019, 97, 635–644. [Google Scholar] [CrossRef]
- Loubière, S.; Laurent, C.; Bonino, J.P.; Rousset, A. Elaboration, Microstructure and Reactivity of Cr3C2 Powders of Different Morphology. Mater. Res. Bull. 1995, 30, 1535–1546. [Google Scholar] [CrossRef]
- Ji, G.-C.; Li, C.-J.; Wang, Y.-Y.; Li, W.-Y. Microstructural Characterization and Abrasive Wear Performance of HVOF Sprayed Cr3C2–NiCr Coating. Surf. Coat. Technol. 2006, 200, 6749–6757. [Google Scholar] [CrossRef]
- Ozkan, D. Structural Characteristics and Wear, Oxidation, Hot Corrosion Behaviors of HVOF Sprayed Cr3C2-NiCr Hardmetal Coatings. Surf. Coat. Technol. 2023, 457, 129319. [Google Scholar] [CrossRef]
- Kumar, N.; Alam, M.S.; Mishra, N.K.; Kumar, S.; Giri, J.; Aly, A.A.; Gupta, G.K. Cyclic Oxidation of 304L and 316L Stainless Steel Coated and Uncoated with Cr3C2–NiCr at Elevated Temperatures. Mater. Sci. 2025, 43, 103–114. [Google Scholar] [CrossRef]
- Yuan, K.; Lin Peng, R.; Li, X.-H.; Johansson, S. Hot Corrosion Behavior of HVOF-Sprayed CoNiCrAlYSi Coatings in a Sulphate Environment. Vacuum 2015, 122, 47–53. [Google Scholar] [CrossRef]
- Sreenivasulu, V.; Manikandan, M. High-Temperature Corrosion Behaviour of Air Plasma Sprayed Cr3C2-25NiCr and NiCrMoNb Powder Coating on Alloy 80A at 900 °C. Surf. Coat. Technol. 2018, 337, 250–259. [Google Scholar] [CrossRef]
- Reddy, N.C.; Kumar, B.S.A.; Reddappa, H.N.; Ramesh, M.R.; Koppad, P.G.; Kord, S. HVOF Sprayed Ni3Ti and Ni3Ti+ (Cr3C2+20NiCr) Coatings: Microstructure, Microhardness and Oxidation Behaviour. J. Alloys Compd. 2018, 736, 236–245. [Google Scholar] [CrossRef]
- Houdková, Š.; Česánek, Z.; Smazalová, E.; Lukáč, F. The High-Temperature Wear and Oxidation Behavior of CrC-Based HVOF Coatings. J. Therm. Spray. Technol. 2018, 27, 179–195. [Google Scholar] [CrossRef]
- Luo, L.; Liu, S.; Li, J.; Yucheng, W. Oxidation Behavior of Arc-Sprayed FeMnCrAl/Cr3C2–Ni9Al Coatings Deposited on Low-Carbon Steel Substrates. Surf. Coat. Technol. 2011, 205, 3411–3415. [Google Scholar] [CrossRef]
- Zhou, W.; Zhou, K.; Deng, C.; Zeng, K.; Li, Y. Hot Corrosion Behavior of HVOF-Sprayed Cr3C2-WC-NiCoCrMo Coating. Ceram. Int. 2017, 43, 9390–9400. [Google Scholar] [CrossRef]
- Yin, B.; Liu, G.; Zhou, H.; Chen, J.; Yan, F. Microstructures and Properties of Plasma Sprayed FeAl/CeO2/ZrO2 Nano-Composite Coating. Appl. Surf. Sci. 2010, 256, 4176–4184. [Google Scholar] [CrossRef]
- Sun, G.; Tong, Z.; Fang, X.; Liu, X.; Ni, Z.; Zhang, W. Effect of Scanning Speeds on Microstructure and Wear Behavior of Laser-Processed NiCr–Cr3C2–MoS2–CeO2 on 38CrMoAl Steel. Opt. Laser Technol. 2016, 77, 80–90. [Google Scholar] [CrossRef]
- Saladi, S.; Menghani, J.; Prakash, S. Effect of CeO2 on Cyclic Hot-Corrosion Behavior of Detonation-Gun Sprayed Cr3C2-NiCr Coatings on Ni-Based Superalloy. J. Mater. Eng. Perform. 2015, 24, 1379–1389. [Google Scholar] [CrossRef]
- Yu, K.; Zhao, W.; Li, Z.; Guo, N.; Xiao, G.; Zhang, H. High-Temperature Oxidation Behavior and Corrosion Resistance of in-Situ TiC and Mo Reinforced AlCoCrFeNi-Based High Entropy Alloy Coatings by Laser Cladding. Ceram. Int. 2023, 49, 10151–10164. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.; Li, L.; Ren, X. Effect of Heat Treatment on the Microstructure and High Temperature Oxidation Behavior of TiC/Inconel 625 Nanocomposites Fabricated by Selective Laser Melting. Corros. Sci. 2020, 169, 108606. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, L.; Yan, S.; Yu, G.; Chen, J.; Yin, F. High Temperature Oxidation Behavior of Atmosphere Plasma Sprayed AlCoCrFeNi High-Entropy Alloy Coatings. Mater. Chem. Phys. 2022, 282, 125939. [Google Scholar] [CrossRef]
- Xu, G.; Wang, K.; Li, H.; Ju, J.; Dong, X.; Jiang, H.; Wang, Q.; Ding, W. In Situ Nanoparticle-Induced Anti-Oxidation Mechanisms: Application to FeCrB Alloys. Corros. Sci. 2021, 190, 109656. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, S.; Ye, F.; Ren, X.; Feng, P. Recycling of MoSi2-Based Industrial Solid Wastes for the Fabrication and High-Temperature Oxidation Behavior of MoSi2–ZrSi2–SiC Composite Coating. Compos. B Eng. 2024, 274, 111281. [Google Scholar] [CrossRef]
- Xu, G.; Wang, K.; Li, H.; Ju, J.; Jiang, H.; Wang, Q. In Situ Nanoparticle-Induced Anti-Oxidation of FeCr Alloys. Mater. Charact. 2021, 179, 111372. [Google Scholar] [CrossRef]
- Dong, J.; Long, X.; Zhou, L.; Deng, H.; Zhang, H.; Qiu, W.; Yin, M.; Yin, G.; Chen, L. Effect of Ti Addition on High-Temperature Properties of AlCoCrFeNi2.1 Coating Prepared on Ti-6Al-4V Alloy. Corros. Sci. 2023, 217, 111105. [Google Scholar] [CrossRef]
- Li, Y.; Tang, N.; Tunthawiroon, P.; Koizumi, Y.; Chiba, A. Characterisation of Oxide Films Formed on Co–29Cr–6Mo Alloy Used in Die-Casting Moulds for Aluminium. Corros. Sci. 2013, 73, 72–79. [Google Scholar] [CrossRef]
- Zhai, W.; Gao, Y.; Sun, L.; He, L.; Wang, Y. Improvement of High Temperature Oxidation Behavior of Cr3C2-20 Wt % Ni Cermets by Adding 1 Wt % Mo. J. Alloys Compd. 2018, 731, 271–278. [Google Scholar] [CrossRef]
- Hou, J.; Gan, J.; Li, W.; Tian, H.; Luo, X.; Ju, J.; Zhou, Y.; Liu, S.; Yao, H.; Chen, Z.; et al. Exceptional High-Temperature Oxidation Resistance and Mechanisms of a Novel Chemically Complex Intermetallic Alloy. Corros. Sci. 2023, 225, 111607. [Google Scholar] [CrossRef]
- Li, Y.; Shang, H.; Zhang, Q.; Elabyouki, M.; Zhang, W. Theoretical Study of the Structure and Properties of Ni/V Porphyrins under Microwave Electric Field: A DFT Study. Fuel 2020, 278, 118305. [Google Scholar] [CrossRef]
Sample | Size (μm) | Composition |
---|---|---|
C1 | 15–45 | 85 wt.% Cr3C2-NiCr, 15 wt.% CoCrMo |
C2 | 15–45 | 85 wt.% Cr3C2-NiCr, 15 wt.% CoCrMo |
E1 | 15–45 | 88.2 wt.% Cr3C2-NiCr, 9.8 wt.% CoCrMo, 2 wt.% CeO2 |
E2 | 15–45 | 86.4 wt.% Cr3C2-NiCr, 9.6 wt.% CoCrMo, 4 wt.% CeO2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Wang, J.; Lu, H.; Du, J.; Qi, X.; Lu, L.; Liu, Z. A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings. Coatings 2025, 15, 826. https://doi.org/10.3390/coatings15070826
Wang L, Wang J, Lu H, Du J, Qi X, Lu L, Liu Z. A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings. Coatings. 2025; 15(7):826. https://doi.org/10.3390/coatings15070826
Chicago/Turabian StyleWang, Linwen, Jiawei Wang, Haiyang Lu, Jiyu Du, Xiaoxia Qi, Laixiao Lu, and Ziwu Liu. 2025. "A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings" Coatings 15, no. 7: 826. https://doi.org/10.3390/coatings15070826
APA StyleWang, L., Wang, J., Lu, H., Du, J., Qi, X., Lu, L., & Liu, Z. (2025). A Comparative Study on the High-Temperature Oxidation Behavior and Mechanisms of Micro/Nanoparticle Composite-Modified Chromium Carbide Metal Ceramic Coatings. Coatings, 15(7), 826. https://doi.org/10.3390/coatings15070826