Advances in Nanostructured Thin Films and Coatings, 3rd Edition

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Surface Characterization, Deposition and Modification".

Deadline for manuscript submissions: 20 March 2026 | Viewed by 954

Special Issue Editors


E-Mail Website
Guest Editor
School of Mathematics and Physics, University of Science and Technology, Beijing 100083, China
Interests: micro/nano/2D materials-mediated modern physics for the integrative innovation of information technology; biomedicine and new energy (including surface- and interface-controlled fabrication of nano/microstructure materials for biomedicine); new energy and industrial catalysis and information technology via novel programmed microfluidic processes; template-assisted nano-imprinting and varieties of inorganic–organic interface cladding processes at nano/atomic scale
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Key Laboratory of Sensors Technology, Beijing Information Science & Technology University, Beijing 100192, China
Interests: smart materials; surface and interface science; composites; self-assembly; sensors; pulsed electric field technique; electromagnetic functional material
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Advanced thin films and coatings represent a kind of solid interface with unique electronic, electric, magnetic, optical, thermal, and mechanical properties with frictional, acoustic, catalytic, and permeable properties with advanced applications in specific fields. They have become increasingly important in modern information technology, new energy, biotechnology, and other industrial fields, being crucial in the theory and development of surface and interface science and in fabrication technology, from the microscale to the nanoscale, and even the atomic scale (e.g., ALD).

In particular, with advances in nanoscience and nanotechnology, different varieties of nanostructured thin films and coatings are being developed with unique electronic, electric, magnetic, optical, catalytic, thermal, and mechanical properties. These are instrumental in achieving progress in the areas of information technology, biomedical engineering, and new energy. Therefore, this is a fitting time to present a summary of the progress made in the field of nanostructured thin films and coatings. We are pleased to invite you and your colleagues to contribute to this Special Issue, which will be published by the well-established SCI-indexed journal Coatings. We welcome submissions either in the form of reviews on a particular topic (e.g., nanostructured thin films for solar cells) or recent original research results. We look forward to receiving your contributions.

Prof. Dr. Yujun Song
Prof. Dr. Qingwei Liao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • micro-nanostructure
  • thin films
  • coatings
  • surface and interface
  • inorganic–organic composites
  • atom fabrication

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 23723 KB  
Article
Active Surfaces in Sensor Technologies Utilizing Ceramic Nanotube-Conducting Polymer Composites Containing Embedded Gold Nanoparticles
by Alexandru Florentin Trandabat, Romeo Cristian Ciobanu and Oliver Daniel Schreiner
Coatings 2025, 15(10), 1211; https://doi.org/10.3390/coatings15101211 - 14 Oct 2025
Viewed by 441
Abstract
This study describes the approach to develop hybrid nanostructures made of four varieties of ceramic nanotubes and three types of conductive polymers embedded with gold nanoparticles through a novel technique, which can exhibit distinct sensory properties not documented in the existing literature. Atomic [...] Read more.
This study describes the approach to develop hybrid nanostructures made of four varieties of ceramic nanotubes and three types of conductive polymers embedded with gold nanoparticles through a novel technique, which can exhibit distinct sensory properties not documented in the existing literature. Atomic force microscopy (AFM) analysis highlighted the characteristics of their surface roughness, identifying which could be the best choice for electrochemical electrodes depending on their surface structure. The incorporation of gold nanoparticles modifies the surface structure and forces the original grains to create voids that allow the gold particles to penetrate deeper and gather in small clusters, which in turn leads to a minor increase in grain size and localized sharpening of the peaks. The analysis mainly identified the peaks that were higher in relation to the valleys to identify a Gaussian distribution. It turned out that the configuration of ZnO nanotubes in the composites leads to the highest Ra values, with Al2O3 nanotubes coming in second place. Regarding the contribution of conducting polymers, PANI:EB presented the highest importance for all composites, while P3HT was relevant in several other cases. The evaluation of the electrode roughness, as described in this paper, is essential for the evaluation of its potential electrochemical activity and acts as a reliable measure that goes beyond the role of the evaluation of the active surface area (EASA). In our opinion, the evaluation of the EASA by traditional approaches described in the literature is not relevant for sensor applications, since the evaluation of the electrode surface structure must be performed before electrochemical tests, because the general electrochemical tests designed for sensor applications do not evaluate the EASA. Consequently, a thorough assessment of the electrode surface structure is advised, choosing the optimal electrodes according to this design, and additional data obtained from cyclic voltammetry will finally ascertain the true EASA and the actual performance of the respective electrode for identifying the target molecules. Full article
(This article belongs to the Special Issue Advances in Nanostructured Thin Films and Coatings, 3rd Edition)
Show Figures

Figure 1

12 pages, 2429 KB  
Article
Amphoteric Doping Effect of Ho3+ on the Performance of Medium-Temperature-Sintered PLZT Energy Storage Ceramics
by Yue Xu, Qingwei Liao, Shuhan Zhang, Xinyu Liu, Haoran Zhang and Lei Qin
Coatings 2025, 15(9), 1067; https://doi.org/10.3390/coatings15091067 - 11 Sep 2025
Viewed by 370
Abstract
The development of dielectric capacitors with high energy-storage density and ultrafast discharge capability is essential for next-generation pulsed power systems. In this work, (Pb, La, Ho, Zr, Ti)O3 (PLZTH) ceramics were fabricated via medium-temperature sintering (950–1100 °C) combined with Ho3+ doping [...] Read more.
The development of dielectric capacitors with high energy-storage density and ultrafast discharge capability is essential for next-generation pulsed power systems. In this work, (Pb, La, Ho, Zr, Ti)O3 (PLZTH) ceramics were fabricated via medium-temperature sintering (950–1100 °C) combined with Ho3+ doping to systematically tailor their energy-storage properties. This processing strategy not only mitigates Pb volatilization but also enhances compatibility with base-metal electrodes such as Ni and Cu. In addition, Ho3+ ions exhibit amphoteric doping behavior, which contributes to the enhancement of relaxor characteristics and grain refinement. H4 ceramic delivers an outstanding recoverable energy-storage density (Wrec) of 0.91 J/cm3 and a high energy efficiency (η) of 87% under 216 kV/cm, along with a power density (PD) of 28.8 MW/cm3 and an ultrafast discharge time (t0.9) of only 4.97 ns at 180 kV/cm. This study not only proposes a viable route toward high-performance medium-temperature-sintered PLZT ceramics but also elucidates the effective mechanism of Ho3+ amphoteric doping in modulating the relaxor state and properties of perovskite-based ceramics. Full article
(This article belongs to the Special Issue Advances in Nanostructured Thin Films and Coatings, 3rd Edition)
Show Figures

Figure 1

Back to TopTop