Special Issue "Advances in Civil Engineering"

A special issue of CivilEng (ISSN 2673-4109).

Deadline for manuscript submissions: closed (30 April 2021).

Special Issue Editor

Prof. Dr. Angelo Luongo
E-Mail Website
Guest Editor
Department of Civil, Architecture and Building and Environmental Engineering, University of L’Aquila, Via Giovanni Gronchi 18, 67100 L’Aquila, Italy
Interests: continuum and structural mechanics; linear and nonlinear dynamics; stability and bifurcation of dynamical systems; buckling and postbuckling of elastic structures; localization phenomena; aeroelasticity; perturbation methods; computational mechanics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

This Special Issue is open to receiving high-quality papers in open-access format on the invitation of the Editorial Board members, or those invited by the Editorial Office and the Editor-in-Chief. Both original research articles and comprehensive review papers are welcome. Contributions to this special issue will be published free of charge in open-access format after peer-review.

Prof. Dr. Angelo Luongo
Guest Editor

 

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
New Technique to Improve the Ductility of Steel Beam to Column Bolted Connections: A Numerical Investigation
CivilEng 2021, 2(4), 929-942; https://doi.org/10.3390/civileng2040050 - 22 Oct 2021
Viewed by 276
Abstract
A novel method to improve the robustness of steel end plate connections is presented in this paper. Existing commonly adopted techniques alter the stiffness of the beam or the end plate to improve the connection’s robustness. In this study, the robustness is enhanced [...] Read more.
A novel method to improve the robustness of steel end plate connections is presented in this paper. Existing commonly adopted techniques alter the stiffness of the beam or the end plate to improve the connection’s robustness. In this study, the robustness is enhanced by improving the contribution of the bolts to the rotational capacity of connections; the higher the bolts’ elongation, the higher the rotational capacity that can be achieved. However, the brittleness of the bolt material, combined with its small length, results in negligible elongation. Alternatively, the load path between the end plate and the bolts can be interrupted with a ductile element to achieve the required elongation. This can be achieved by inserting a steel sleeve with a designated length, thickness, and wall curvature between the end plate and the washer. The proposed sleeve should be designed so that its ultimate capacity is less than the force in the bolt at failure; accordingly, the sleeve develops a severe bending deformation before the failure of any connection components. Using a validated finite element model, end plate connections with various parameters are numerically investigated to understand the performance of the sleeve device. The proposed system substantially enhances the rotational capacity of the connections, ranging between 1.37 and 2.46 times that of the standard connection. It is also concluded that the sleeved connections exhibit a consistent elastic response with the standard connections, indicating the proposed system is compatible with codified elastic design approaches without modification. Furthermore, for a specific connection, various ductile responses can be achieved without altering the connection capacity nor configuration. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Mechanical Properties of Hybrid Structures Incorporating Nano-Silica and Basalt Fiber Pellets
CivilEng 2021, 2(4), 909-928; https://doi.org/10.3390/civileng2040049 - 14 Oct 2021
Viewed by 357
Abstract
Recently, developing a nonferrous reinforcement system (corrosion-free system) using durable and ductile cement-based materials that incorporate discrete fibers has been a promising option for exposed concrete structures in cold regions or marine environments. Therefore, in this study, properties of a novel type of [...] Read more.
Recently, developing a nonferrous reinforcement system (corrosion-free system) using durable and ductile cement-based materials that incorporate discrete fibers has been a promising option for exposed concrete structures in cold regions or marine environments. Therefore, in this study, properties of a novel type of cementitious composite comprising nano-silica and a high dosage of slag were investigated. The hybrid (layered) composites assessed in this study were composed of two layers of different types of cementitious composites. Normal concrete (NC) was used in the top layer combined with a layer of fiber-reinforced cementitious composite (FRCC) reinforced with either the recently developed basalt fiber (BF) pellets (basalt fiber strands encapsulated by a polymeric resin or steel fibers (SF)) that were used at different dosages. The post-cracking behavior in terms of residual strength, residual index, and toughness are presented and discussed. The analysis of results showed the effectiveness of the BF pellets in enhancing the post-cracking behavior of specimens, as they behaved comparably to counterpart specimens comprising SF, which makes them a good candidate for infrastructural applications including rehabilitation such as new bridge girders or overlays. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Size Effect in FRP Shear-Strengthened RC Beams: Design Models versus Experimental Data
CivilEng 2021, 2(4), 874-894; https://doi.org/10.3390/civileng2040047 - 06 Oct 2021
Viewed by 352
Abstract
Numerous studies on the size effect have been devoted to reinforced concrete (RC) beams. They have shown that increasing the beam size leads to a decrease in ultimate shear strength (stress) at failure. This is reflected in the design model of most current [...] Read more.
Numerous studies on the size effect have been devoted to reinforced concrete (RC) beams. They have shown that increasing the beam size leads to a decrease in ultimate shear strength (stress) at failure. This is reflected in the design model of most current international codes and guidelines, where the size effect is taken into consideration by reducing concrete contribution to the shear resistance (force). In contrast, the size effect of RC beams strengthened with externally bonded (EB) fibre-reinforced polymer (FRP) is not fully documented, and very few experimental studies have been devoted to the phenomenon. The objective of this study was to evaluate the accuracy of the current code and guideline models in terms of the size effect on the EB-FRP contribution to shear resistance. To this end, a database of experimental findings on the size effect in EB-FRP-strengthened beams was built based on the reported literature, as well as our own experimental tests. The data were analysed and compared with the predictions of six current codes and design guidelines to assess their accuracy. Experimental results clearly revealed the presence of a size effect related to EB-FRP as well as the existence of interaction between internal stirrups and EB-CFRP. Based on analysis of the collected experimental test results, the study clearly revealed that the predictions of current codes and guidelines overestimate the contribution of EB-FRP systems to shear resistance. The size effect tends to exacerbate this overestimation as the effective depth (d) of the beams increases. Therefore, until the size effect for RC beams strengthened in shear with EB-FRP is captured by the prediction models, current codes and design guidelines are to be used with caution. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Site-Specific Response Spectra: Guidelines for Engineering Practice
CivilEng 2021, 2(3), 712-735; https://doi.org/10.3390/civileng2030039 - 02 Sep 2021
Cited by 1 | Viewed by 441
Abstract
Code response spectrum models, which are used widely in the earthquake-resistant design of buildings, are simple to apply but they do not necessarily represent the real behavior of an earthquake. A code response spectrum model typically incorporates ground motion behavior in a diversity [...] Read more.
Code response spectrum models, which are used widely in the earthquake-resistant design of buildings, are simple to apply but they do not necessarily represent the real behavior of an earthquake. A code response spectrum model typically incorporates ground motion behavior in a diversity of earthquake scenarios affecting the site and does not represent any specific earthquake scenario. The soil amplification phenomenon is also poorly represented, as the current site classification scheme contains little information over the potential dynamic response behavior of the soil sediments. Site-specific response spectra have the merit of much more accurately representing real behavior. The improvement in accuracy can be translated into significant potential cost savings. Despite all the potential merits of adopting site-specific response spectra, few design engineers make use of these code provisions that have been around for a long time. This lack of uptake of the procedure by structural designers is related to the absence of a coherent set of detailed guidelines to facilitate practical applications. To fill in this knowledge gap, this paper aims at explaining the procedure in detail for generating site-specific response spectra for the seismic design or assessment of buildings. Surface ground motion accelerograms generated from the procedure can also be employed for nonlinear time-history analyses where necessary. A case study is presented to illustrate the procedure in a step-by-step manner. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Lateral Deformation Capacity and Plastic Hinge Length of RC Columns Confined with Textile Reinforced Mortar Jackets
CivilEng 2021, 2(3), 670-691; https://doi.org/10.3390/civileng2030037 - 26 Aug 2021
Viewed by 417
Abstract
This paper presents a nonlinear finite element analysis (FEA) of textiles reinforced mortars (TRM)-confined reinforced concrete (RC) columns through jacketing, under combined axial and cyclic loadings. The FEA models were validated with an experimental study in the literature that was conducted on full-scale [...] Read more.
This paper presents a nonlinear finite element analysis (FEA) of textiles reinforced mortars (TRM)-confined reinforced concrete (RC) columns through jacketing, under combined axial and cyclic loadings. The FEA models were validated with an experimental study in the literature that was conducted on full-scale square columns reinforced with continuous steel bars (no lap splices). Subsequently, parametric study was performed on the validated FEA models. The parameters considered include various jacket’s lengths and mortar strengths. Moreover, semiempirical models were developed to evaluate the plastic hinge length (LP) and the ultimate drift ratio of RC columns confined with TRM and FRP jackets, while considering the jacket length effect. The FEA models and experimental results were in good agreement. The finite element results revealed that the increase in the jacket length improved the lateral deformation capacity and increased the plastic hinge length linearly up to a confinement ratio of 0.2. Beyond this point, the plastic hinge length shortened as the confinement ratio raised. Moreover, mortars with higher flexural strength resulted in a slightly higher deformation capacity. However, the difference in the mortar compressive strength did not affect the ultimate lateral deformation capacity. The semiempirical models show that the average difference in the predicted LP and the ultimate drift ratio values as compared to the experimental and simulated columns was 3.19 and 16.06%, respectively. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Rejuvenation Mechanism of Asphalt Mixtures Modified with Crumb Rubber
CivilEng 2021, 2(2), 370-384; https://doi.org/10.3390/civileng2020020 - 12 May 2021
Viewed by 568
Abstract
Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the [...] Read more.
Asphalt aging is one of the main factors causing asphalt pavements deterioration. Previous studies reported on some aging benefits of asphalt rubber mixtures through laboratory evaluation. A field observation of various pavement sections of crumb rubber modified asphalt friction courses (ARFC) in the Phoenix, Arizona area indicated an interesting pattern of transverse/reflective cracking. These ARFC courses were placed several years ago on existing jointed plain concrete pavements for highway noise mitigation. Over the years, the shoulders had very noticeable and extensive cracking over the joints; however, the driving lanes of the pavement showed less cracking formation in severity and extent. The issue with this phenomenon is that widely adopted theories that stem from continuum mechanics of materials and layered mechanics of pavement systems cannot directly explain this phenomenon. One hypothesis could be that traffic loads continually manipulate the pavement over time, which causes some maltenes (oils and resins) compounds absorbed in the crumb rubber particles to migrate out leading to rejuvenation of the mastic in the asphalt mixture. To investigate the validity of such a hypothesis, an experimental laboratory testing was undertaken to condition samples with and without dynamic loads at high temperatures. This was followed by creep compliance and indirect tensile strength testing. The results showed the higher creep for samples aged with dynamic loading compared to those aged without loading. Higher creep compliance was attributed to higher flexibility of samples due to the rejuvenation of the maltenes. This was also supported by the higher fracture energy results obtained for samples conditioned with dynamic loading from indirect tensile strength testing. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
4D BIM for Construction Logistics Management
CivilEng 2021, 2(2), 325-348; https://doi.org/10.3390/civileng2020018 - 16 Apr 2021
Cited by 2 | Viewed by 1026
Abstract
This study presents an investigation into the extent to which emerging building information modelling (BIM) can be applied to construction logistics management (CLM). Given the specialist nature of the domains, the study employed an in-depth qualitative interview, whereby six experts were interrogated about [...] Read more.
This study presents an investigation into the extent to which emerging building information modelling (BIM) can be applied to construction logistics management (CLM). Given the specialist nature of the domains, the study employed an in-depth qualitative interview, whereby six experts were interrogated about their experiences of BIM for CLM. The study found the main applications of BIM on CLM to be the creation of three-dimensional (3D) site layout plans and four-dimensional (4D) coordination of site processes and common user plant, updating the 4D logistics plan as the project progressed and collaboration in BIM-based logistics coordination. Furthermore, there was a consensus amongst interviewees on improvement in site safety, comprehension of logistics information, efficiency on site, and effectiveness of layout planning as the main benefits. Lastly, the lack of training with implications on understanding was one of the main barriers to applying BIM to CLM. The findings from this study have the potential to stimulate the uptake of BIM by construction logistics practitioners. By so doing, the performance construction project delivery can be improved, and waste can be minimised or eliminated. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Construction Site Utilization Planning: A Process Based upon Industry Best Practices
CivilEng 2021, 2(2), 309-324; https://doi.org/10.3390/civileng2020017 - 16 Apr 2021
Cited by 1 | Viewed by 730
Abstract
Construction site utilization planning (CSUP), also known as jobsite layout planning, has implications on the safety, productivity, scheduling, and budgetary performance of a project. Past research efforts on CSUP have mainly focused on the development of optimization systems that delineate and allocate site [...] Read more.
Construction site utilization planning (CSUP), also known as jobsite layout planning, has implications on the safety, productivity, scheduling, and budgetary performance of a project. Past research efforts on CSUP have mainly focused on the development of optimization systems that delineate and allocate site space to predetermined temporary facilities based on time and/or cost constraints. Despite the significant body of knowledge on site optimization systems, the applicability of optimization algorithms remains limited due to the unique requirements and site constraints faced on each construction project. An important aspect not identified in past research efforts are the current practices for site utilization plan (SUP) development currently used by the construction industry. Therefore, the objectives of this research were to: (1) determine the state-of-the-practice regarding CSUP within the construction industry, (2) identify current SUP best practices, and (3) develop a procedure that outlines the CSUP process. An electronic survey was sent to 4021 industry professionals inquiring on current CSUP practices. A total of 240 responses were received, for a response rate of 6%. Thirteen best practices were identified from the survey, each focusing on an important aspect of the site planning process. These best practices were validated through a follow-up survey, as well as in-person interviews with experienced construction professionals. From the best practices, a procedure describing the development of a SUP was created. Key components identified were: (1) begin CSUP during budget development, (2) involve all stake holders associated with the project, and (3) remain flexible on space allocation throughout the construction life cycle. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Thermal Analysis of Mass Concrete Containing Ground Granulated Blast Furnace Slag
CivilEng 2021, 2(1), 254-270; https://doi.org/10.3390/civileng2010014 - 17 Mar 2021
Cited by 1 | Viewed by 1105
Abstract
In this study, the early age thermal properties of a concrete mix containing ground granulated blast furnace slag (GGBFS) were investigated and incorporated in a finite-element model. A two-term exponential degree of hydration function was proposed to better capture the early age behavior. [...] Read more.
In this study, the early age thermal properties of a concrete mix containing ground granulated blast furnace slag (GGBFS) were investigated and incorporated in a finite-element model. A two-term exponential degree of hydration function was proposed to better capture the early age behavior. An FEM program (ABAQUS) was used to predict the temperature time-history of three 1.2-m (4-ft) cubes cast with a mix design containing 50% replacement of the cement by weight with GGBFS. The FEM predictions match well with the experimental temperature measurements. Results show that using the measurements of the thermal properties, an accurate estimation of the temperature difference can be obtained for a concrete mix containing GGBFS, and engineers can use the estimated temperature difference to take preventative measures to minimize the risk of thermal cracking. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Reality Capture of Buildings Using 3D Laser Scanners
CivilEng 2021, 2(1), 214-235; https://doi.org/10.3390/civileng2010012 - 03 Mar 2021
Cited by 2 | Viewed by 1471
Abstract
The urgent need to improve performance in the construction industry has led to the adoption of many innovative technologies. 3D laser scanners are amongst the leading technologies being used to capture and process assets or construction project data for use in various applications. [...] Read more.
The urgent need to improve performance in the construction industry has led to the adoption of many innovative technologies. 3D laser scanners are amongst the leading technologies being used to capture and process assets or construction project data for use in various applications. Due to its nascent nature, many questions are still unanswered about 3D laser scanning, which in turn contribute to the slow adaptation of the technology. Some of these include the role of 3D laser scanners in capturing and processing raw construction project data. How accurate are the 3D laser scanner or point cloud data? How does laser scanning fit with other wider emerging technologies such as building information modeling (BIM)? This study adopts a proof-of-concept approach, which in addition to answering the aforementioned questions, illustrates the application of the technology in practice. The study finds that the quality of the data, commonly referred to as point cloud data, is still a major issue as it depends on the distance between the target object and 3D laser scanner’s station. Additionally, the quality of the data is still very dependent on data file sizes and the computational power of the processing machine. Lastly, the connection between laser scanning and BIM approaches is still weak as what can be done with a point cloud data model in a BIM environment is still very limited. The aforementioned findings reinforce existing views on the use of 3D laser scanners in capturing and processing construction project data. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
BIM Interoperability Analyses in Structure Design
CivilEng 2021, 2(1), 174-192; https://doi.org/10.3390/civileng2010010 - 14 Feb 2021
Viewed by 1191
Abstract
The building information modelling (BIM) methodology supports collaborative works, based on the centralization of all information in a federated BIM model and on an efficient level of interoperability between BIM-based platforms. Concerning the structure design, the interoperability capacity of the most used software [...] Read more.
The building information modelling (BIM) methodology supports collaborative works, based on the centralization of all information in a federated BIM model and on an efficient level of interoperability between BIM-based platforms. Concerning the structure design, the interoperability capacity of the most used software presents limitations that must be identified and alternative solutions must be proposed. This study analyzes the process of transfer of structure models between modeling and structure analysis tools. Distinct building cases were performed in order to recognize the type of limitations verified in the transfer processes concerning two-way data flow between several software. The study involves the modeling software ArchiCAD 2020, Revit 2020, and AECOsim 2019 and the structure analyzes tools SAP 2020, Robot 2020, and ETABS 22020. The transfer processes are realized in two ways: using the native data format; using a universal standard data transfer, the Industry Foundation Classes (IFC) format. The level of maturity of BIM in structure design is still relatively low, caused essentially by interoperability problems, but despite the limitations detected, this study shows throughout the development of several building case, that the methodology has clear advantages in the development of the structure project. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Development of Roughness Prediction Models for Laos National Road Network
CivilEng 2021, 2(1), 158-173; https://doi.org/10.3390/civileng2010009 - 11 Feb 2021
Viewed by 867
Abstract
The International Roughness Index (IRI) has been accepted globally as an essential indicator for assessing pavement condition. The Laos Road Management System (RMS) utilizes a default Highway Development and Management (HDM-4) IRI prediction model. However, developed IRI values have shown the need to [...] Read more.
The International Roughness Index (IRI) has been accepted globally as an essential indicator for assessing pavement condition. The Laos Road Management System (RMS) utilizes a default Highway Development and Management (HDM-4) IRI prediction model. However, developed IRI values have shown the need to calibrate the IRI prediction model. Data records are not fully available for Laos yet, making it difficult to calibrate IRI for the local conditions. This paper aims to develop an IRI prediction model for the National Road Network (NRN) based on the available Laos RMS database. The Multiple Linear Regression (MLR) analysis technique was applied to develop two new IRI prediction models for Double Bituminous Surface Treatment (DBST) and Asphalt Concrete (AC) pavement sections. The final database consisted of 83 sections with 269 observations over a 1850 km length of DBST NRN and 29 sections with 122 observations over a 718 km length of AC NRN. The proposed models predict IRI as a function of pavement age and Cumulative Equivalent Single-Axle Load (CESAL). The model’s parameter analysis confirmed their significance, and R2 values were 0.89 and 0.84 for DBST and AC models, respectively. It can be concluded that the developed models can serve as a useful tool for engineers maintaining paved NRN. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Study on High Performance Polymer-Modified Cement Grouts
CivilEng 2021, 2(1), 134-157; https://doi.org/10.3390/civileng2010008 - 10 Feb 2021
Cited by 1 | Viewed by 1436
Abstract
Engineers worldwide use various additives or chemical admixtures, such as polymer latexes, to improve the properties of cementitious materials for many construction projects. In this paper, the influence of acrylic or epoxy resin emulsions, along with a polycarboxylate superplasticiser on some basic properties [...] Read more.
Engineers worldwide use various additives or chemical admixtures, such as polymer latexes, to improve the properties of cementitious materials for many construction projects. In this paper, the influence of acrylic or epoxy resin emulsions, along with a polycarboxylate superplasticiser on some basic properties (rheological behaviour, setting time, bleeding, strength) of thick cement grouts is presented. The experimental approach included the use of different polymer dosages mixed with grouts made of low water to cement ratios. The laboratory tests revealed that the incorporation of acrylic resin in grouts marginally affected the viscosity, whereas a significant increase in viscosity was obtained when an epoxy resin was added. Regardless of the prolonged setting times, both polymers improved the development of early or final strength. An acrylic resin dosage ranging from 0.25% to 0.75% and an epoxy resin dosage from 5% to 7.5% displayed the highest strength values, at all water to cement ratios. Additionally, all the polymer-modified grouts exhibited a higher bleed capacity, a fact that is significantly important where the bleeding of the grouts is crucial. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Study of the Bond Capacity of FRCM- and SRG-Masonry Joints
CivilEng 2021, 2(1), 68-86; https://doi.org/10.3390/civileng2010005 - 10 Jan 2021
Cited by 1 | Viewed by 835
Abstract
Fiber-reinforced cementitious matrix (FRCM) and steel-reinforced grout (SRG) have been increasingly applied as externally bonded reinforcement to masonry members in the last few years. Unlike fiber-reinforced polymer (FRP), FRCM and SRG have good performance when exposed to (relatively) high temperature and good compatibility [...] Read more.
Fiber-reinforced cementitious matrix (FRCM) and steel-reinforced grout (SRG) have been increasingly applied as externally bonded reinforcement to masonry members in the last few years. Unlike fiber-reinforced polymer (FRP), FRCM and SRG have good performance when exposed to (relatively) high temperature and good compatibility with inorganic substrates, and they can be applied to wet surfaces and at (reasonably) low temperatures. Although numerous studies investigated the mechanical properties and bond performance of various FRCM and SRG, new composites have been developed recently, and their performance still needs to be assessed. In this study, the bond behavior of three FRCM composites and one SRG composite applied to a masonry substrate is investigated. Sixteen single-lap direct shear tests (four tests for each composite) are performed. The FRCM studied comprised one layer of carbon, PBO (polyparaphenylene benzobisoxazole), or alkali-resistant (AR)-glass bidirectional textile embedded within two cement-based matrices. The SRG composite comprised one layer of a unidirectional stainless-steel cord textile embedded within a lime-based matrix. The results show a peculiar bond behavior and failure mode for each composite. Based on these results, the behavior of the carbon and PBO FRCM is modeled solving the bond differential equation with a trilinear cohesive material law (CML). Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Application of Artificial Neural Network to Predict Load Bearing Capacity and Stiffness of Perforated Masonry Walls
CivilEng 2021, 2(1), 48-67; https://doi.org/10.3390/civileng2010004 - 06 Jan 2021
Cited by 6 | Viewed by 1195
Abstract
Perforations adversely affect the structural response of unreinforced masonry walls (UMW) by reducing the wall’s load bearing capacity, which can cause serious structural damage. In the absence of a reliable procedure to accurately predict the load bearing capacity and stiffness of perforated masonry [...] Read more.
Perforations adversely affect the structural response of unreinforced masonry walls (UMW) by reducing the wall’s load bearing capacity, which can cause serious structural damage. In the absence of a reliable procedure to accurately predict the load bearing capacity and stiffness of perforated masonry walls subjected to in-plane loadings, this study presents a novel approach to measure these parameters by developing simple but practical equations. In this regard, the Multi-Pier (MP) method as a numerical approach was employed along with the application of an Artificial Neural Network (ANN). The simulated responses of centrally perforated UMW by the MP method were validated utilizing full-scale experimental walls. The validated MP model was used to generate a simulated database. The simulated database includes results of analyses for 49 different configurations of perforated masonry walls and their corresponding solid masonry walls. The effect of the area and shape of the perforations on the UMW’s behavior was evaluated by the MP method. Following the outcomes of the verified MP method, the ANN is trained to develop empirical equations to accurately predict the reduction in the load bearing capacity and initial stiffness due to the perforation of UMW. The results of this study indicate that the perforations have a significant effect on the structural capacity of the UMW subjected to in-plane loadings. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Seismic Design of Offshore Structures under Simplified Pulse-Like Earthquakes
CivilEng 2020, 1(3), 310-325; https://doi.org/10.3390/civileng1030020 - 26 Nov 2020
Viewed by 976
Abstract
Oil and gas offshore structures are essential infrastructures which are subjected to several categories of environmental loads such as wave and wind actions. These loads commonly designate the structural design of offshore platforms. Additionally, several offshore platforms are founded in earthquake-prone areas and [...] Read more.
Oil and gas offshore structures are essential infrastructures which are subjected to several categories of environmental loads such as wave and wind actions. These loads commonly designate the structural design of offshore platforms. Additionally, several offshore platforms are founded in earthquake-prone areas and the design of them is intensely affected by seismic ground motions. To be sure, various investigations have studied the earthquake response of offshore structures under the action of far-field seismic events. However, the inelastic behavior of platforms under the action of simple pulses has not been examined yet, where the latter loads can successfully simulate near-fault earthquakes. This work investigates, for the first time to our knowledge, the dynamic inelastic response of offshore platforms subjected to triangular, exponential, sinusoidal, and rectangular pulses. Thus, three-dimensional offshore structures are examined also considering the dynamic soil-pile-platform interaction effects, satisfying all the pertinent provisions of European Codes and taking into account geometric and material nonlinearities as well as the effects of the different angles of incidence of seismic waves on the overall/global response of offshore platforms. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Article
Strengthening Strategies for Existing Rammed Earth Walls Subjected to Out-of-Plane Loading
CivilEng 2020, 1(3), 229-242; https://doi.org/10.3390/civileng1030014 - 30 Oct 2020
Viewed by 1321
Abstract
The paper reports an experimental campaign to study the effectiveness of strengthening measures proposed for rammed earth (RE) wall in an out-of-plane direction. Two simple and feasible strengthening techniques were explored, namely, mesh-wrapped and timber-framed strengthening techniques. The test involved testing three full-scale [...] Read more.
The paper reports an experimental campaign to study the effectiveness of strengthening measures proposed for rammed earth (RE) wall in an out-of-plane direction. Two simple and feasible strengthening techniques were explored, namely, mesh-wrapped and timber-framed strengthening techniques. The test involved testing three full-scale U-shaped RE walls in an out-of-plane direction. The first specimen without any intervention served as the reference wall, while the two others were strengthened with two different strengthening methods. It was observed that both proposed strengthening techniques improved the load-carrying capacity of the wall and the maximum displacement and the energy absorption. The mesh-wrapped strengthening technique was found to be more effective than the timber-framed strengthening technique, which disrupted the visual aspects of the wall’s facade and needed proper anchoring to the foundation. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Review

Jump to: Research

Review
Building Information Modelling in Structural Engineering: A Qualitative Literature Review
CivilEng 2021, 2(3), 765-793; https://doi.org/10.3390/civileng2030042 - 04 Sep 2021
Viewed by 663
Abstract
Over the past decade, the fields of civil engineering, i.e., structural engineering, have increasingly used the building information modelling (BIM) approach in both professional practice and as the focus of research. However, the field of structural engineering, which can be seen as a [...] Read more.
Over the past decade, the fields of civil engineering, i.e., structural engineering, have increasingly used the building information modelling (BIM) approach in both professional practice and as the focus of research. However, the field of structural engineering, which can be seen as a sub-discipline of civil engineering, misses, as far as the authors are aware, a real state-of-the-art on the use of BIM in this regard. The aim of this paper, therefore, is to start bridging that gap. In particular, the authors have conducted a traditional literature review on the utilisation of BIM in structural engineering, enabling them to perform a detailed content analysis of publications. The qualitative investigation of the literature that the authors have conducted has highlighted six main BIM uses in structural engineering: (1) structural analyses; (2) production of shop drawings; (3) optimized structural design, early identification of constructability issues, and a comparison of different structural solutions; (4) seismic risk assessments; (5) existing-condition modelling and retrofitting of structures; and (6) structural health monitoring. Each of these is discussed in relation to their reference workflows; use of information models; information exchanges; and main limitations. In the conclusions, the authors identify current gaps in knowledge, as well as likely developments and improvements in the utilization of BIM in structural engineering. The authors also outline the possible significance of this work more broadly. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Review
A Review of Accelerated Pavement Testing Applications in Non-Pavement Research
CivilEng 2021, 2(3), 612-631; https://doi.org/10.3390/civileng2030034 - 27 Jul 2021
Viewed by 594
Abstract
Accelerated pavement testing (APT) facilities has been demonstrated for years as a multi-purpose solution for pavement and non-pavement research. Even though APTs are widely known in the pavement industry, little has been publicized about their successful applications in non-pavement research. This paper provides [...] Read more.
Accelerated pavement testing (APT) facilities has been demonstrated for years as a multi-purpose solution for pavement and non-pavement research. Even though APTs are widely known in the pavement industry, little has been publicized about their successful applications in non-pavement research. This paper provides a survey of APT applications in non-pavement research. The purpose of the survey is to review and encourage APT owners and agencies to explore the opportunities that APT facilities can present to promote non-pavement research initiatives. The survey demonstrates the ability of APTs to conduct research for bridges, transportation technology, drainage, geotechnical engineering, automobiles, environmental engineering, highway safety, among others. Non-pavement research can be incorporated into APT programs to diversify funding sources for research operations and promote cooperation with other agencies. Finally, suggestions for future and current APTs are made in this paper, including evaluating connected vehicles, work zone applications, smart infrastructure, truck platooning effects on bridge performance, sustainable drainage systems, bridges, advancement in geotechnical methods, sustainable fuels, and unmanned aerial systems. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Review
Urban Heat Island: Causes, Consequences, and Mitigation Measures with Emphasis on Reflective and Permeable Pavements
CivilEng 2021, 2(2), 459-484; https://doi.org/10.3390/civileng2020026 - 09 Jun 2021
Viewed by 1472
Abstract
Economic and social development of urban and rural areas continues in parallel with the increase of the human population, especially in developing countries, which leads to sustained expansion of impervious surface areas, particularly paved surfaces. The conversion of pervious surfaces to impervious surfaces [...] Read more.
Economic and social development of urban and rural areas continues in parallel with the increase of the human population, especially in developing countries, which leads to sustained expansion of impervious surface areas, particularly paved surfaces. The conversion of pervious surfaces to impervious surfaces significantly modifies local energy balance in urban areas and contributes to urban heat island (UHI) formation, mainly in densely developed cities. This paper represents a literature review on the causes and consequences of the UHI and potential measures that could be adopted to improve the urban microclimate. The primary focus is to discuss and summarise significant findings on the UHI phenomenon and its consequences, such as the impact on human thermal comfort and health, energy consumption, air pollution, and surface water quality deterioration. Regarding the measures to mitigate UHI, particular emphasis is given to the reflective and permeable pavements. Full article
(This article belongs to the Special Issue Advances in Civil Engineering)
Show Figures

Figure 1

Back to TopTop