Special Issue "Exosomes and Extracellular Vesicles in Health and Disease"

A special issue of Cells (ISSN 2073-4409).

Deadline for manuscript submissions: closed (15 July 2019).

Special Issue Editor

Dr. Jennifer Clare Jones
E-Mail Website
Guest Editor
Molecular Immunogenetics and Vaccine Research Section, Vaccine Branch, CCR, NCI, NIH, Bethesda, MD, USA
Interests: cancer; radiation; immunotherapy; extracellular vesicles; liquid biopsy; precision medicine

Special Issue Information

Dear Colleagues,

Extracellular vesicles (EVs, including exosomes and other membrane-bound packets) are released by all cells under all conditions, ranging from homeostatic equilibrium to states of stress. The cargo contained within those EV packets varies according to the state of the cell and includes byproducts of cellular housekeeping activities as well as molecular signals to neighboring cells. These packets of information, whether transferred between prochlorococci in ocean colonies, or transferred between cells of multicellular organisms, relay cell–cell information and thereby help to coordinate system-wide responses to stressors or changing conditions. In states of disease, these EVs, depending on their origin, may adaptively ameliorate the disease state or may contribute to the pathogenesis of the disease. Furthermore, because they are released from intercellular spaces into the circulation, they are being investigated through ‘liquid biopsies’ for various diseases and biological conditions.

EV research is complicated by the small size of EVs and the lack of tools to study different populations of these nano-sized packages in detail. With the emergence of new tools and methods for EV research, these challenges are being overcome, and the heterogeneity of EVs, their cargo, and their function in health and disease are beginning to be understood. The purpose of this Special Issue is to examine EV heterogeneity, biogenesis, and specific attributes of EVs as they relate to the balance between tissue repair versus cell death, tumor growth versus tumor regression, immune activation versus immune suppression, proliferation versus senescence, system-based integrity versus degradation, and other conditions that relate to health and disease. In providing this overview, this Special Issue will delineate the current foundations and tools for the next steps toward determining the roles of EV in pathogenesis and therapeutic strategies for the treatment of a wide range of diseases.

Dr. Jennifer Clare Jones
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Cells is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • exosomes
  • extracellular vesicles
  • precision medicine
  • systems biology
  • cellular biology

Published Papers (20 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

Open AccessArticle
Intracerebral Injection of Extracellular Vesicles from Mesenchymal Stem Cells Exerts Reduced Aβ Plaque Burden in Early Stages of a Preclinical Model of Alzheimer’s Disease
Cells 2019, 8(9), 1059; https://doi.org/10.3390/cells8091059 - 10 Sep 2019
Abstract
Bone marrow Mesenchymal Stem Cells (BM-MSCs), due to their strong protective and anti-inflammatory abilities, have been widely investigated in the context of several diseases for their possible therapeutic role, based on the release of a highly proactive secretome composed of soluble factors and [...] Read more.
Bone marrow Mesenchymal Stem Cells (BM-MSCs), due to their strong protective and anti-inflammatory abilities, have been widely investigated in the context of several diseases for their possible therapeutic role, based on the release of a highly proactive secretome composed of soluble factors and Extracellular Vesicles (EVs). BM-MSC-EVs, in particular, convey many of the beneficial features of parental cells, including direct and indirect β-amyloid degrading-activities, immunoregulatory and neurotrophic abilities. Therefore, EVs represent an extremely attractive tool for therapeutic purposes in neurodegenerative diseases, including Alzheimer’s disease (AD). We examined the therapeutic potential of BM-MSC-EVs injected intracerebrally into the neocortex of APPswe/PS1dE9 AD mice at 3 and 5 months of age, a time window in which the cognitive behavioral phenotype is not yet detectable or has just started to appear. We demonstrate that BM-MSC-EVs are effective at reducing the Aβ plaque burden and the amount of dystrophic neurites in both the cortex and hippocampus. The presence of Neprilysin on BM-MSC-EVs, opens the possibility of a direct β-amyloid degrading action. Our results indicate a potential role for BM-MSC-EVs already in the early stages of AD, suggesting the possibility of intervening before overt clinical manifestations. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessArticle
Viscosity of Plasma as a Key Factor in Assessment of Extracellular Vesicles by Light Scattering
Cells 2019, 8(9), 1046; https://doi.org/10.3390/cells8091046 - 06 Sep 2019
Abstract
Extracellular vesicles (EVs) isolated from biological samples are a promising material for use in medicine and technology. However, the assessment methods that would yield repeatable concentrations, sizes and compositions of the harvested material are missing. A plausible model for the description of EV [...] Read more.
Extracellular vesicles (EVs) isolated from biological samples are a promising material for use in medicine and technology. However, the assessment methods that would yield repeatable concentrations, sizes and compositions of the harvested material are missing. A plausible model for the description of EV isolates has not been developed. Furthermore, the identity and genesis of EVs are still obscure and the relevant parameters have not yet been identified. The purpose of this work is to better understand the mechanisms taking place during harvesting of EVs, in particular the role of viscosity of EV suspension. The EVs were harvested from blood plasma by repeated centrifugation and washing of samples. Their size and shape were assessed by using a combination of static and dynamic light scattering. The average shape parameter of the assessed particles was found to be ρ ~ 1 (0.94–1.1 in exosome standards and 0.7–1.2 in blood plasma and EV isolates), pertaining to spherical shells (spherical vesicles). This study has estimated the value of the viscosity coefficient of the medium in blood plasma to be 1.2 mPa/s. It can be concluded that light scattering could be a plausible method for the assessment of EVs upon considering that EVs are a dynamic material with a transient identity. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Open AccessArticle
Clues to Non-Invasive Implantation Window Monitoring: Isolation and Characterisation of Endometrial Exosomes
Cells 2019, 8(8), 811; https://doi.org/10.3390/cells8080811 - 01 Aug 2019
Abstract
Despite the significant advances in the last decades, low implantation rate per transferred embryo still remains a major concern in assisted reproductive techniques, highlighting a need to better characterize endometrial receptivity also by mean of specific biomarkers. Based on physiology and on the [...] Read more.
Despite the significant advances in the last decades, low implantation rate per transferred embryo still remains a major concern in assisted reproductive techniques, highlighting a need to better characterize endometrial receptivity also by mean of specific biomarkers. Based on physiology and on the intimate contact with endometrium as the tissue of interest, in this study we developed and validated an optimized protocol that uses extracellular vesicles (EVs) recovered from uterine flushings and from a cervical brush, the latter never used until now as an EVs source, as surrogates for endometrial biopsies. This method combines the safety of sampling with the ability to study the expression profile across the uterine cycle. We have compared the yield and composition of EVs recovered from different biofluids samples and fractions thereof, opting for chemical precipitation as the EV isolation procedure, assuring the highest yield without introducing any bias in specific EV recovery. Moreover, collected EVs, in particular exosome-like vesicles, express putative endometrial markers, such as glycodelin A and receptors for estrogen and progesterone, thus confirming their endometrial origin. We also identified uterine flushing EVs, in particular those recovered from its mucous fraction, as the richest source of endometrial transcripts, likely correlated to cellular (epithelial) origin of these vesicles. Finally, our pilot quantitative assessment of three endometrial gene profiles, in samples collected at different time points along the luteal phase, revealed the fluctuations apparently recapitulating gene expression variability prior reported during the menstrual cycle. Unlike tissue biopsy that is subjected to inter- and intra-sample differences, our data suggest that EVs from liquid biopsies (from uterine flushings and a cervical brush) obtained through less-invasive procedures, can be substrate to detect and track the tissue representative expression profiles, better depicting the total endometrium complexity. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Open AccessArticle
An Omics Approach to Extracellular Vesicles from HIV-1 Infected Cells
Cells 2019, 8(8), 787; https://doi.org/10.3390/cells8080787 - 29 Jul 2019
Abstract
Human Immunodeficiency Virus-1 (HIV-1) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infecting nearly 37 million people worldwide. Currently, there is no definitive cure, mainly due to HIV-1′s ability to enact latency. Our previous work has shown that exosomes, a small extracellular [...] Read more.
Human Immunodeficiency Virus-1 (HIV-1) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS), infecting nearly 37 million people worldwide. Currently, there is no definitive cure, mainly due to HIV-1′s ability to enact latency. Our previous work has shown that exosomes, a small extracellular vesicle, from uninfected cells can activate HIV-1 in latent cells, leading to increased mostly short and some long HIV-1 RNA transcripts. This is consistent with the notion that none of the FDA-approved antiretroviral drugs used today in the clinic are transcription inhibitors. Furthermore, these HIV-1 transcripts can be packaged into exosomes and released from the infected cell. Here, we examined the differences in protein and nucleic acid content between exosomes from uninfected and HIV-1-infected cells. We found increased cyclin-dependent kinases, among other kinases, in exosomes from infected T-cells while other kinases were present in exosomes from infected monocytes. Additionally, we found a series of short antisense HIV-1 RNA from the 3′ LTR that appears heavily mutated in exosomes from HIV-1-infected cells along with the presence of cellular noncoding RNAs and cellular miRNAs. Both physical and functional validations were performed on some of the key findings. Collectively, our data indicate distinct differences in protein and RNA content between exosomes from uninfected and HIV-1-infected cells, which can lead to different functional outcomes in recipient cells. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessArticle
An Exosomal Urinary miRNA Signature for Early Diagnosis of Renal Fibrosis in Lupus Nephritis
Cells 2019, 8(8), 773; https://doi.org/10.3390/cells8080773 - 25 Jul 2019
Cited by 2
Abstract
For lupus nephritis (LN) management, it is very important to detect fibrosis at an early stage. Urinary exosomal miRNAs profiling can be used as a potential multi-marker phenotyping tool to identify early fibrosis. We isolated and characterised urinary exosomes and cellular pellets from [...] Read more.
For lupus nephritis (LN) management, it is very important to detect fibrosis at an early stage. Urinary exosomal miRNAs profiling can be used as a potential multi-marker phenotyping tool to identify early fibrosis. We isolated and characterised urinary exosomes and cellular pellets from patients with biopsy-proven LN (n = 45) and healthy controls (n = 20). LN chronicity index (CI) correlated with urinary exosomal miR-21, miR-150, and miR-29c (r = 0.565, 0.840, −0.559, respectively). This miRNA profile distinguished low CI from moderate-high CI in LN patients with a high sensitivity and specificity (94.4% and 99.8%). Furthermore, this multimarker panel predicted an increased risk of progression to end-stage renal disease (ESRD). Pathway analysis identified VEGFA and SP1 as common target genes for the three miRNAs. Immunohistochemistry in LN renal biopsies revealed a significant increase of COL1A1 and COL4A1 correlated with renal chronicity. SP1 decreased significantly in the high-CI group (p = 0.002). VEGFA levels showed no differences. In vitro experiments suggest that these miRNA combinations promote renal fibrosis by increasing profibrotic molecules through SP1 and Smad3/TGFβ pathways. In conclusion, a urinary exosomal multimarker panel composed of miR-21, miR-150, and miR-29c provides a non-invasive method to detect early renal fibrosis and predict disease progression in LN. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Open AccessArticle
Comparison of the RNA Content of Extracellular Vesicles Derived from Paracoccidioides brasiliensis and Paracoccidioides lutzii
Cells 2019, 8(7), 765; https://doi.org/10.3390/cells8070765 - 23 Jul 2019
Cited by 1
Abstract
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt [...] Read more.
Paracoccidioides brasiliensis and P. lutzii cause human paracoccidioidomycosis. We have previously characterized the <200-nt RNA sub-populations contained in fungal extracellular vesicles (EVs) from P. brasiliensis Pb18 and other pathogenic fungi. We have presently used the RNA-seq strategy to compare the <200- and >200-nt RNA fractions contained in EVs isolated from culture supernatants of P. brasiliensis Pb18, Pb3, and P. lutzii Pb01. Shared mRNA sequences were related to protein modification, translation, and DNA metabolism/biogenesis, while those related to transport and oxidation-reduction were exclusive to Pb01. The presence of functional full-length mRNAs was validated by in vitro translation. Among small non-coding (nc)RNA, 15 were common to all samples; small nucleolar (sno)RNAs were enriched in P. brasiliensis EVs, whereas for P. lutzii there were similar proportions of snoRNA, rRNA, and tRNA. Putative exonic sRNAs were highly abundant in Pb18 EVs. We also found sRNA sequences bearing incomplete microRNA structures mapping to exons. RNA-seq data suggest that extracellular fractions containing Pb18 EVs can modulate the transcriptome of murine monocyte-derived dendritic cells in a transwell system. Considering that sRNA classes are involved in transcription/translation modulation, our general results may indicate that differences in virulence among fungal isolates can be related to their distinct EV-RNA content. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessArticle
Melanoma-Derived Extracellular Vesicles Bear the Potential for the Induction of Antigen-Specific Tolerance
Cells 2019, 8(7), 665; https://doi.org/10.3390/cells8070665 - 02 Jul 2019
Abstract
Background: Cancer-induced immunosuppression is antigen-specific rather than systemic and the mechanisms for the antigen specificity are incompletely understood. Here we explore the option that tumor-associated antigens (TAAs) may be transferred to antigen-presenting cells (APCs), together with immunosuppressive molecules, through cancer-derived small extracellular vesicles [...] Read more.
Background: Cancer-induced immunosuppression is antigen-specific rather than systemic and the mechanisms for the antigen specificity are incompletely understood. Here we explore the option that tumor-associated antigens (TAAs) may be transferred to antigen-presenting cells (APCs), together with immunosuppressive molecules, through cancer-derived small extracellular vesicles (sEVs), such as exosomes. Stimulation of a suppressive phenotype in the very same APCs that take up TAAs may yield antigen-specific tolerance. Methods: sEVs isolated from patient-derived or well-established melanoma cell lines were used to demonstrate the transfer of major histocompatibility complex (MHC) molecules to the surface of APCs. The immunosuppressive influence of sEVs was assessed by flow cytometry analysis of activation markers, cytokine expression, and mixed lymphocyte reactions. Results: MHC class I molecules were transferred from melanoma cells to the cell surface of APCs by sEVs. Concomitantly, CD86 and CD40 co-stimulatory molecules were down-regulated and IL-6 production was strongly induced. TGF-β transported by sEVs contributed to the promotion of a suppressive phenotype of APCs. Conclusion: The presented results indicate the existence of a hitherto undescribed mechanism that offers an explanation for antigen-specific tolerance induction mediated by cancer-derived sEVs. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessArticle
Bone Marrow Derived Extracellular Vesicles Activate Osteoclast Differentiation in Traumatic Brain Injury Induced Bone Loss
Cells 2019, 8(1), 63; https://doi.org/10.3390/cells8010063 - 17 Jan 2019
Cited by 1
Abstract
Traumatic brain injury (TBI) is a major source of worldwide morbidity and mortality. Patients suffering from TBI exhibit a higher susceptibility to bone loss and an increased rate of bone fractures; however, the underlying mechanisms remain poorly defined. Herein, we observed significantly lower [...] Read more.
Traumatic brain injury (TBI) is a major source of worldwide morbidity and mortality. Patients suffering from TBI exhibit a higher susceptibility to bone loss and an increased rate of bone fractures; however, the underlying mechanisms remain poorly defined. Herein, we observed significantly lower bone quality and elevated levels of inflammation in bone and bone marrow niche after controlled cortical impact-induced TBI in in vivo CD-1 mice. Further, we identified dysregulated NF-κB signaling, an established mediator of osteoclast differentiation and bone loss, within the bone marrow niche of TBI mice. Ex vivo studies revealed increased osteoclast differentiation in bone marrow-derived cells from TBI mice, as compared to sham injured mice. We also found bone marrow derived extracellular vesicles (EVs) from TBI mice enhanced the colony forming ability and osteoclast differentiation efficacy and activated NF-κB signaling genes in bone marrow-derived cells. Additionally, we showed that miRNA-1224 up-regulated in bone marrow-derived EVs cargo of TBI. Taken together, we provide evidence that TBI-induced inflammatory stress on bone and the bone marrow niche may activate NF-κB leading to accelerated bone loss. Targeted inhibition of these signaling pathways may reverse TBI-induced bone loss and reduce fracture rates. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Open AccessArticle
Very Long-Chain C24:1 Ceramide Is Increased in Serum Extracellular Vesicles with Aging and Can Induce Senescence in Bone-Derived Mesenchymal Stem Cells
Cells 2019, 8(1), 37; https://doi.org/10.3390/cells8010037 - 10 Jan 2019
Cited by 6
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a sphingolipid associated with the promotion of cell senescence and apoptosis. [...] Read more.
Extracellular vesicles (EVs), including exosomes and microvesicles, function in cell-to-cell communication through delivery of proteins, lipids and microRNAs to target cells via endocytosis and membrane fusion. These vesicles are enriched in ceramide, a sphingolipid associated with the promotion of cell senescence and apoptosis. We investigated the ceramide profile of serum exosomes from young (24–40 yrs.) and older (75–90 yrs.) women and young (6–10 yrs.) and older (25–30 yrs.) rhesus macaques to define the role of circulating ceramides in the aging process. EVs were isolated using size-exclusion chromatography. Proteomic analysis was used to validate known exosome markers from Exocarta and nanoparticle tracking analysis used to characterize particle size and concentration. Specific ceramide species were identified with lipidomic analysis. Results show a significant increase in the average amount of C24:1 ceramide in EVs from older women (15.4 pmol/sample) compared to those from younger women (3.8 pmol/sample). Results were similar in non-human primate serum samples with increased amounts of C24:1 ceramide (9.3 pmol/sample) in older monkeys compared to the younger monkeys (1.8 pmol/sample). In vitro studies showed that primary bone-derived mesenchymal stem cells (BMSCs) readily endocytose serum EVs, and serum EVs loaded with C24:1 ceramide can induce BMSC senescence. Elevated ceramide levels have been associated with poor cardiovascular health and memory impairment in older adults. Our data suggest that circulating EVs carrying C24:1 ceramide may contribute directly to cell non-autonomous aging. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessCommunication
Tangential Flow Filtration for Highly Efficient Concentration of Extracellular Vesicles from Large Volumes of Fluid
Cells 2018, 7(12), 273; https://doi.org/10.3390/cells7120273 - 16 Dec 2018
Cited by 15
Abstract
Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to [...] Read more.
Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned cell culture media revealed that the former concentrates EVs of comparable physicochemical characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size), and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Review

Jump to: Research, Other

Open AccessReview
Extracellular Vesicles: A Possible Link between HIV and Alzheimer’s Disease-Like Pathology in HIV Subjects?
Cells 2019, 8(9), 968; https://doi.org/10.3390/cells8090968 - 24 Aug 2019
Abstract
The longevity of people with HIV/AIDS has been prolonged with the use of antiretroviral therapy (ART). The age-related complications, especially cognitive deficits, rise as HIV patients live longer. Deposition of beta-amyloid (Aβ), a hallmark of Alzheimer’s disease (AD), has been observed in subjects [...] Read more.
The longevity of people with HIV/AIDS has been prolonged with the use of antiretroviral therapy (ART). The age-related complications, especially cognitive deficits, rise as HIV patients live longer. Deposition of beta-amyloid (Aβ), a hallmark of Alzheimer’s disease (AD), has been observed in subjects with HIV-associated neurocognitive disorders (HAND). Various mechanisms such as neuroinflammation induced by HIV proteins (e.g., Tat, gp120, Nef), excitotoxicity, oxidative stress, and the use of ART contribute to the deposition of Aβ, leading to dementia. However, progressive dementia in older subjects with HIV might be due to HAND, AD, or both. Recently, extracellular vesicles (EVs)/exosomes, have gained recognition for their importance in understanding the pathology of both HAND and AD. EVs can serve as a possible link between HIV and AD, due to their ability to package and transport the toxic proteins implicated in both AD and HIV (Aβ/tau and gp120/tat, respectively). Given that Aß is also elevated in neuron-derived exosomes isolated from the plasma of HIV patients, it is reasonable to suggest that neuron-to-neuron exosomal transport of Aβ and tau also contributes to AD-like pathology in HIV-infected subjects. Therefore, exploring exosomal contents is likely to help distinguish HAND from AD. However, future prospective clinical studies need to be conducted to compare the exosomal contents in the plasma of HIV subjects with and without HAND as well as those with and without AD. This would help to find new markers and develop new treatment strategies to treat AD in HIV-positive subjects. This review presents comprehensive literatures on the mechanisms contributing to Aβ deposition in HIV-infected cells, the role of EVs in the propagation of Aβ in AD, the possible role of EVs in HIV-induced AD-like pathology, and finally, possible therapeutic targets or molecules to treat HIV subjects with AD. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessReview
Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis
Cells 2019, 8(7), 727; https://doi.org/10.3390/cells8070727 - 15 Jul 2019
Cited by 8
Abstract
The use of extracellular vesicles, specifically exosomes, as carriers of biomarkers in extracellular spaces has been well demonstrated. Despite their promising potential, the use of exosomes in the clinical setting is restricted due to the lack of standardization in exosome isolation and analysis [...] Read more.
The use of extracellular vesicles, specifically exosomes, as carriers of biomarkers in extracellular spaces has been well demonstrated. Despite their promising potential, the use of exosomes in the clinical setting is restricted due to the lack of standardization in exosome isolation and analysis methods. The purpose of this review is to not only introduce the different types of extracellular vesicles but also to summarize their differences and similarities, and discuss different methods of exosome isolation and analysis currently used. A thorough understanding of the isolation and analysis methods currently being used could lead to some standardization in the field of exosomal research, allowing the use of exosomes in the clinical setting to become a reality. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessReview
Novel Aspects of Extracellular Vesicles as Mediators of Cancer-Associated Thrombosis
Cells 2019, 8(7), 716; https://doi.org/10.3390/cells8070716 - 13 Jul 2019
Cited by 1
Abstract
The establishment of prothrombotic states during cancer progression is well reported but the precise mechanisms underlying this process remain elusive. A number of studies have implicated the presence of the clotting initiator protein, tissue factor (TF), in circulating tumor-derived extracellular vesicles (EVs) with [...] Read more.
The establishment of prothrombotic states during cancer progression is well reported but the precise mechanisms underlying this process remain elusive. A number of studies have implicated the presence of the clotting initiator protein, tissue factor (TF), in circulating tumor-derived extracellular vesicles (EVs) with thrombotic manifestations in certain cancer types. Tumor cells, as well as tumor-derived EVs, may activate and promote platelet aggregation by TF-dependent and independent pathways. Cancer cells and their secreted EVs may also facilitate the formation of neutrophil extracellular traps (NETs), which may contribute to thrombus development. Alternatively, the presence of polyphosphate (polyP) in tumor-derived EVs may promote thrombosis through a TF-independent route. We conclude that the contribution of EVs to cancer coagulopathy is quite complex, in which one or more mechanisms may take place in a certain cancer type. In this context, strategies that could attenuate the crosstalk between the proposed pro-hemostatic routes could potentially reduce cancer-associated thrombosis. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessReview
Delivery of microRNAs by Extracellular Vesicles in Viral Infections: Could the News be Packaged?
Cells 2019, 8(6), 611; https://doi.org/10.3390/cells8060611 - 18 Jun 2019
Cited by 1
Abstract
Extracellular vesicles (EVs) are released by various cells and recently have attracted attention because they constitute a refined system of cell–cell communication. EVs deliver a diverse array of biomolecules including messenger RNAs (mRNAs), microRNAs (miRNAs), proteins and lipids, and they can be used [...] Read more.
Extracellular vesicles (EVs) are released by various cells and recently have attracted attention because they constitute a refined system of cell–cell communication. EVs deliver a diverse array of biomolecules including messenger RNAs (mRNAs), microRNAs (miRNAs), proteins and lipids, and they can be used as potential biomarkers in normal and pathological conditions. The cargo of EVs is a snapshot of the donor cell profile; thus, in viral infections, EVs produced by infected cells could be a central player in disease pathogenesis. In this context, miRNAs incorporated into EVs can affect the immune recognition of viruses and promote or restrict their replication in target cells. In this review, we provide an updated overview of the roles played by EV-delivered miRNAs in viral infections and discuss the potential consequences for the host response. The full understanding of the functions of EVs and miRNAs can turn into useful biomarkers for infection detection and monitoring and/or uncover potential therapeutic targets. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessReview
HCC-Derived Exosomes: Critical Player and Target for Cancer Immune Escape
Cells 2019, 8(6), 558; https://doi.org/10.3390/cells8060558 - 08 Jun 2019
Cited by 4
Abstract
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver, and currently the second most common cause of cancer-related deaths worldwide with increasing incidence and poor prognosis. Exosomes are now considered as important mediators of host anti-tumor immune response as well as tumor [...] Read more.
Hepatocellular carcinoma (HCC) is a primary malignancy of the liver, and currently the second most common cause of cancer-related deaths worldwide with increasing incidence and poor prognosis. Exosomes are now considered as important mediators of host anti-tumor immune response as well as tumor cell immune escape. HCC-derived exosomes have been shown to attenuate the cytotoxicity of T-cells and NK cells, and promote the immuno-suppressive M2 macrophages, N2 neutrophils, and Bregs. These exosomes harbor several immune-related non-coding RNAs and proteins that drive immune-escape and tumor progression, and thus may serve as potential diagnostic biomarkers and therapeutic targets for HCC. In a previous study, we identified miR146a as an exosomal factor that promotes M2-polarization and suppresses the anti-HCC function of T-cells. In this review, we summarized the role of tumor-derived exosomes and their key components in mediating tumor immune escape during HCC development. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Open AccessReview
Exosome in Cardiovascular Diseases: A Complex World Full of Hope
Cells 2019, 8(2), 166; https://doi.org/10.3390/cells8020166 - 17 Feb 2019
Cited by 9
Abstract
Exosomes are a subgroup of extracellular vesicles containing a huge number of bioactive molecules. They represent an important means of cell communication, mostly between different cell populations, with the purpose of maintaining tissue homeostasis and coordinating the adaptive response to stress. This type [...] Read more.
Exosomes are a subgroup of extracellular vesicles containing a huge number of bioactive molecules. They represent an important means of cell communication, mostly between different cell populations, with the purpose of maintaining tissue homeostasis and coordinating the adaptive response to stress. This type of intercellular communication is important in the cardiovascular field, mainly due to the fact that the heart is a complex multicellular system. Given the growing interest in the role of exosomes in cardiovascular diseases and the numerous studies published in the last few decades, we focused on the most relevant results about exosomes in the cardiovascular filed starting from their characterization, passing through the study of their function, and ending with perspectives for their use in cardiovascular therapies. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Open AccessReview
Role of Exosomes in the Regulation of T-Cell Mediated Immune Responses and in Autoimmune Disease
Cells 2019, 8(2), 154; https://doi.org/10.3390/cells8020154 - 12 Feb 2019
Cited by 5
Abstract
T-cell mediated immune responses should be regulated to avoid the development of autoimmune or chronic inflammatory diseases. Several mechanisms have been described to regulate this process, namely death of overactivated T cells by cytokine deprivation, suppression by T regulatory cells (Treg), induction of [...] Read more.
T-cell mediated immune responses should be regulated to avoid the development of autoimmune or chronic inflammatory diseases. Several mechanisms have been described to regulate this process, namely death of overactivated T cells by cytokine deprivation, suppression by T regulatory cells (Treg), induction of expression of immune checkpoint molecules such as CTLA-4 and PD-1, or activation-induced cell death (AICD). In addition, activated T cells release membrane microvesicles called exosomes during these regulatory processes. In this review, we revise the role of exosome secretion in the different pathways of immune regulation described to date and its importance in the prevention or development of autoimmune disease. The expression of membrane-bound death ligands on the surface of exosomes during AICD or the more recently described transfer of miRNA or even DNA inside T-cell exosomes is a molecular mechanism that will be analyzed. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Open AccessReview
Biology, Pathophysiological Role, and Clinical Implications of Exosomes: A Critical Appraisal
Cells 2019, 8(2), 99; https://doi.org/10.3390/cells8020099 - 29 Jan 2019
Cited by 7
Abstract
Exosomes are membrane-enclosed entities of endocytic origin, which are generated during the fusion of multivesicular bodies (MVBs) and plasma membranes. Exosomes are released into the extracellular milieu or body fluids; this process was reported for mesenchymal, epithelial, endothelial, and different immune cells (B-cells [...] Read more.
Exosomes are membrane-enclosed entities of endocytic origin, which are generated during the fusion of multivesicular bodies (MVBs) and plasma membranes. Exosomes are released into the extracellular milieu or body fluids; this process was reported for mesenchymal, epithelial, endothelial, and different immune cells (B-cells and dendritic cells), and was reported to be correlated with normal physiological processes. The compositions and abundances of exosomes depend on their tissue origins and cell types. Exosomes range in size between 30 and 100 nm, and shuttle nucleic acids (DNA, messenger RNAs (mRNAs), microRNAs), proteins, and lipids between donor and target cells. Pathogenic microorganisms also secrete exosomes that modulate the host immune system and influence the fate of infections. Such immune-modulatory effect of exosomes can serve as a diagnostic biomarker of disease. On the other hand, the antigen-presenting and immune-stimulatory properties of exosomes enable them to trigger anti-tumor responses, and exosome release from cancerous cells suggests they contribute to the recruitment and reconstitution of components of tumor microenvironments. Furthermore, their modulation of physiological and pathological processes suggests they contribute to the developmental program, infections, and human diseases. Despite significant advances, our understanding of exosomes is far from complete, particularly regarding our understanding of the molecular mechanisms that subserve exosome formation, cargo packaging, and exosome release in different cellular backgrounds. The present study presents diverse biological aspects of exosomes, and highlights their diagnostic and therapeutic potentials. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Graphical abstract

Open AccessReview
Extracellular Vesicles and Matrix Remodeling Enzymes: The Emerging Roles in Extracellular Matrix Remodeling, Progression of Diseases and Tissue Repair
Cells 2018, 7(10), 167; https://doi.org/10.3390/cells7100167 - 13 Oct 2018
Cited by 24
Abstract
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and [...] Read more.
Extracellular vesicles (EVs) are membrane enclosed micro- and nano-sized vesicles that are secreted from almost every species, ranging from prokaryotes to eukaryotes, and from almost every cell type studied so far. EVs contain repertoire of bioactive molecules such as proteins (including enzymes and transcriptional factors), lipids, carbohydrates and nucleic acids including DNA, coding and non-coding RNAs. The secreted EVs are taken up by neighboring cells where they release their content in recipient cells, or can sail through body fluids to reach distant organs. Since EVs transport bioactive cargo between cells, they have emerged as novel mediators of extra- and intercellular activities in local microenvironment and inter-organ communications distantly. Herein, we review the activities of EV-associated matrix-remodeling enzymes such as matrix metalloproteinases, heparanases, hyaluronidases, aggrecanases, and their regulators such as extracellular matrix metalloproteinase inducers and tissue inhibitors of metalloproteinases as novel means of matrix remodeling in physiological and pathological conditions. We discuss how such EVs act as novel mediators of extracellular matrix degradation to prepare a permissive environment for various pathological conditions such as cancer, cardiovascular diseases, arthritis and metabolic diseases. Additionally, the roles of EV-mediated matrix remodeling in tissue repair and their potential applications as organ therapies have been reviewed. Collectively, this knowledge could benefit the development of new approaches for tissue engineering. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Other

Jump to: Research, Review

Open AccessFeature PaperBrief Report
Plasma Corticotropin-Releasing Factor Receptors and B7-2+ Extracellular Vesicles in Blood Correlate with Irritable Bowel Syndrome Disease Severity
Cells 2019, 8(2), 101; https://doi.org/10.3390/cells8020101 - 30 Jan 2019
Cited by 1
Abstract
Extracellular vesicles (EVs) are composed of bilayer membranes that are released by different cell types and are present in bodily fluids, such as blood, urine, and bile. EVs are thought to play a key role in intracellular communication. Based on their size and [...] Read more.
Extracellular vesicles (EVs) are composed of bilayer membranes that are released by different cell types and are present in bodily fluids, such as blood, urine, and bile. EVs are thought to play a key role in intracellular communication. Based on their size and density, EVs are classified into small, medium, or large EVs. Cargo composition in EVs reflects physiological changes in health and disease. Patients with irritable bowel syndrome (IBS) exhibit visceral hypersensitivity and mood disorders. Stressful episodes often precede disease symptoms in IBS patients. Stress-induced symptoms include, but are not limited to, abdominal pain and mood swings. Perceived stress responses are mediated by two known G protein-coupled receptors (GPCRs), corticotropin-releasing factor receptor 1 and 2 (CRFRs). CRFRs belong to the Class B secretin receptor family of GPCRs. Here, we show that CRFRs were present in human and murine plasma, and in EVs purified from mouse serum. CRFRs were present in plasma from IBS patients and healthy controls. EVs secreted from immune cells influence both adaptive and innate immune responses via exchange of EVs between different immune cell types. B7-2 (CD86), a plasma membrane antigen-presenting protein, is present on EVs secreted from dendritic, B-, and mast cells, whereas CD9 is present on EVs secreted from dendritic and intestinal epithelial cells. We found that plasma CRFR levels positively correlated with B7-2+ EVs (R = 0.8597, p < 0.0001), but no association was seen with CD9+ EVs. Plasma CRFRs expression negatively correlated with IBS severity scores. Our data suggests that plasma EVs from immune cells carry CRFRs as cargos and influence cell-cell communication in health and disease. Full article
(This article belongs to the Special Issue Exosomes and Extracellular Vesicles in Health and Disease)
Show Figures

Figure 1

Back to TopTop