Biomolecules and Materials from Agro-Industrial Wastes, 2nd Edition

A special issue of Biomolecules (ISSN 2218-273X). This special issue belongs to the section "Bio-Engineered Materials".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 783

Special Issue Editor

Special Issue Information

Dear Colleagues,

Green and sustainable chemistry is a very hot topic for those who study biomass all over the world. Biomass-based resources are being increasingly seen, from a biorefinery perspective, to be required to utilise each plant part, rather than to be grown for a single purpose. Extracting bioactive, functional, or energy-dense molecules from the residues of agricultural processes allows for the increased sustainability of the supply chain and enhances the bioeconomy.

This Special Issue aims to collect original papers and/or review papers dealing with complementary and alternative approaches to the study of molecules and materials from biomass, as well as their applications in several fields, from bioenergy to green extraction methodologies.

Prof. Dr. Valdir Florencio Da Veiga Junior
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomolecules is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive molecules from discarded plant parts
  • new extraction methodologies
  • green solvents
  • green chemistry
  • bioenergy
  • biorefinery
  • biofibres

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 870 KiB  
Article
Optimized Extraction Method for Neutral Cannabinoids Quantification Using UHPLC-HRMS/MS
by João Victor Meirelles, Débora Cristina Diniz Estevam, Vanessa Farelo dos Santos, Henrique Marcelo Gualberto Pereira, Tatiana D. Saint Pierre, Valdir F. Veiga-Junior and Monica Costa Padilha
Biomolecules 2025, 15(2), 246; https://doi.org/10.3390/biom15020246 - 8 Feb 2025
Viewed by 649
Abstract
The Cannabis market is experiencing steady global growth. Cannabis herbal extracts (CHE) are interesting and sought-after products for many clinical conditions. The medical potential of these formulations is mainly attributed to neutral cannabinoids, such as cannabidiol (CBD), tetrahydrocannabinol (THC), and cannabinol (CBN), and [...] Read more.
The Cannabis market is experiencing steady global growth. Cannabis herbal extracts (CHE) are interesting and sought-after products for many clinical conditions. The medical potential of these formulations is mainly attributed to neutral cannabinoids, such as cannabidiol (CBD), tetrahydrocannabinol (THC), and cannabinol (CBN), and their non-standardized content poses a significant fragility in these pharmaceutical inputs. High-resolution mass spectrometry portrays a powerful alternative to their accurate monitoring; however, further analytical steps need to be critically optimized to keep up with instrumental performance. In this study, Full Factorial and Box–Behnken designs were employed to achieve a multivariate optimization of CBD, THC, and CBN extraction from human and veterinary commercial CHE using a minimum methanol/hexane 9:1 volume and short operational times. A predictive model was also constructed using the Response Surface Methodology and its accuracy was validated. Agitation and sonication times were identified as the most significant operational extraction parameters, followed by the extraction mixture volume. The final setup of the optimized method represented a significantly faster and cheaper protocol than those in the literature. The selected neutral cannabinoids quantification was conducted using ultra high-performance liquid chromatography coupled to high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) with a precision of <15%, accuracy of 69–98%, sensitivity of 23–39 ng kg−1, and linearity regarding pharmaceutical requirements. State-of-the-art levels of analytical sensitivity and specificity were achieved in the target quantification due to high-resolution mass spectrometry. The developed method demonstrated reliability and feasibility for routine analytical applications. As a proof-of-concept, it enabled the efficient processing of 16 samples of commercial CHE within a three-hour timeframe, showcasing its practicality and reproducibility, and highlighting its potential for broader adoption in similar scenarios for both human and veterinary medicines. Full article
(This article belongs to the Special Issue Biomolecules and Materials from Agro-Industrial Wastes, 2nd Edition)
Show Figures

Figure 1

Back to TopTop