Special Issue "Fluid Dynamic Interactions in Biological and Bioinspired Propulsion"

A special issue of Biomimetics (ISSN 2313-7673).

Deadline for manuscript submissions: 15 January 2020.

Special Issue Editors

Dr. Keith W. Moored
E-Mail Website
Guest Editor
Department of Mechanical Engineering and Mechanics, Lehigh University, PA, USA
Interests: bio-fluids and mechanics; bioinspired engineering; fluid–structure interactions
Prof. George V. Lauder
E-Mail Website1 Website2
Guest Editor
The Museum of Comparative Zoology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
Interests: biomechanics of aquatic locomotion; musculoskeletal function; biological fluid mechanics; history and philosophy of morphology and physiology

Special Issue Information

Dear Colleagues,

Research into biological and bioinspired propulsion has had substantial growth over the past three decades. However, most of the research has focused on the performance and flow physics of isolated swimmers or propulsors. Now, investigators are turning their attention to understanding the interactions between multiple swimmers in a collective, or between a swimmer and a boundary, or even between multiple propulsors on the same animal. In this Special Issue we want to highlight research that is tackling the challenging subject of interactions in biological and bioinspired propulsion.

Dr. Keith W. Moored
Prof. George V. Lauder
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • schooling or collective interactions
  • ground, free surface, or boundary interaction
  • body–fin, fin–fin or multiple propulsor interactions

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Open AccessArticle
Experimental Study of Body-Fin Interaction and Vortex Dynamics Generated by a Two Degree-Of-Freedom Fish Model
Biomimetics 2019, 4(4), 67; https://doi.org/10.3390/biomimetics4040067 - 08 Oct 2019
Abstract
Oscillatory modes of swimming are used by a majority of aquatic swimmers to generate thrust. This work seeks to understand the phenomenological relationship between the body and caudal fin for fast and efficient thunniform swimming. Phase-averaged velocity data was collected and analyzed in [...] Read more.
Oscillatory modes of swimming are used by a majority of aquatic swimmers to generate thrust. This work seeks to understand the phenomenological relationship between the body and caudal fin for fast and efficient thunniform swimming. Phase-averaged velocity data was collected and analyzed in order to understand the effects of body-fin kinematics on the wake behind a two degree-of-freedom fish model. The model is based on the yellowfin tuna (Thunnus albacares) which is known to be both fast and efficient. Velocity data was obtained along the side of the tail and caudal fin region as well as in the wake downstream of the caudal fin. Body-generated vortices were found to be small and have an insignificant effect on the caudal fin wake. The evolution of leading edge vortices formed on the caudal fin varied depending on the body-fin kinematics. The circulation produced at the trailing edge during each half-cycle was found to be relatively insensitive to the freestream velocity, but also varied with body-fin kinematics. Overall, the generation of vorticity in the wake was found to dependent on the trailing edge motion profile and velocity. Even relatively minor deviations from the commonly used model of sinusoidal motion is shown to change the strength and organization of coherent structures in the wake, which have been shown in the literature to be related to performance metrics such as thrust and efficiency. Full article
(This article belongs to the Special Issue Fluid Dynamic Interactions in Biological and Bioinspired Propulsion)
Show Figures

Figure 1

Open AccessArticle
Maneuvering Performance in the Colonial Siphonophore, Nanomia bijuga
Biomimetics 2019, 4(3), 62; https://doi.org/10.3390/biomimetics4030062 - 05 Sep 2019
Abstract
The colonial cnidarian, Nanomia bijuga, is highly proficient at moving in three-dimensional space through forward swimming, reverse swimming and turning. We used high speed videography, particle tracking, and particle image velocimetry (PIV) with frame rates up to 6400 s−1 to study [...] Read more.
The colonial cnidarian, Nanomia bijuga, is highly proficient at moving in three-dimensional space through forward swimming, reverse swimming and turning. We used high speed videography, particle tracking, and particle image velocimetry (PIV) with frame rates up to 6400 s−1 to study the kinematics and fluid mechanics of N. bijuga during turning and reversing. N. bijuga achieved turns with high maneuverability (mean length–specific turning radius, R/L = 0.15 ± 0.10) and agility (mean angular velocity, ω = 104 ± 41 deg. s−1). The maximum angular velocity of N. bijuga, 215 deg. s−1, exceeded that of many vertebrates with more complex body forms and neurocircuitry. Through the combination of rapid nectophore contraction and velum modulation, N. bijuga generated high speed, narrow jets (maximum = 1063 ± 176 mm s−1; 295 nectophore lengths s−1) and thrust vectoring, which enabled high speed reverse swimming (maximum = 134 ± 28 mm s−1; 37 nectophore lengths s−1) that matched previously reported forward swimming speeds. A 1:1 ratio of forward to reverse swimming speed has not been recorded in other swimming organisms. Taken together, the colonial architecture, simple neurocircuitry, and tightly controlled pulsed jets by N. bijuga allow for a diverse repertoire of movements. Considering the further advantages of scalability and redundancy in colonies, N. bijuga is a model system for informing underwater propulsion and navigation of complex environments. Full article
(This article belongs to the Special Issue Fluid Dynamic Interactions in Biological and Bioinspired Propulsion)
Show Figures

Figure 1

Open AccessArticle
Comparing Models of Lateral Station-Keeping for Pitching Hydrofoils
Biomimetics 2019, 4(3), 51; https://doi.org/10.3390/biomimetics4030051 - 22 Jul 2019
Abstract
Fish must maneuver laterally to maintain their position in schools or near solid boundaries. Unsteady hydrodynamic models, such as the Theodorsen and Garrick models, predict forces on tethered oscillating hydrofoils aligned with the incoming flow. How well these models predict forces when bio-inspired [...] Read more.
Fish must maneuver laterally to maintain their position in schools or near solid boundaries. Unsteady hydrodynamic models, such as the Theodorsen and Garrick models, predict forces on tethered oscillating hydrofoils aligned with the incoming flow. How well these models predict forces when bio-inspired hydrofoils are free to move laterally or when angled relative to the incoming flow is unclear. We tested the ability of five linear models to predict a small lateral adjustment made by a hydrofoil undergoing biased pitch oscillations. We compared the models to water channel tests in which air bushings gave a rigid pitching hydrofoil lateral freedom. What we found is that even with no fitted coefficients, linear models predict some features of the lateral response, particularly high frequency features like the amplitude and phase of passive heave oscillations. To predict low frequency features of the response, such as overshoot and settling time, we needed a semiempirical model based on tethered force measurements. Our results suggest that fish and fish-inspired vehicles could use linear models for some aspects of lateral station-keeping, but would need nonlinear or semiempirical wake models for more advanced maneuvers. Full article
(This article belongs to the Special Issue Fluid Dynamic Interactions in Biological and Bioinspired Propulsion)
Show Figures

Figure 1

Open AccessArticle
Hydrodynamics of Vortex Generation during Bell Contraction by the Hydromedusa Eutonina indicans (Romanes, 1876)
Biomimetics 2019, 4(3), 44; https://doi.org/10.3390/biomimetics4030044 - 05 Jul 2019
Cited by 1
Abstract
Swimming bell kinematics and hydrodynamic wake structures were documented during multiple pulsation cycles of a Eutonina indicans (Romanes, 1876) medusa swimming in a predominantly linear path. Bell contractions produced pairs of vortex rings with opposite rotational sense. Analyses of the momentum flux in [...] Read more.
Swimming bell kinematics and hydrodynamic wake structures were documented during multiple pulsation cycles of a Eutonina indicans (Romanes, 1876) medusa swimming in a predominantly linear path. Bell contractions produced pairs of vortex rings with opposite rotational sense. Analyses of the momentum flux in these wake structures demonstrated that vortex dynamics related directly to variations in the medusa swimming speed. Furthermore, a bulk of the momentum flux in the wake was concentrated spatially at the interfaces between oppositely rotating vortices rings. Similar thrust-producing wake structures have been described in models of fish swimming, which posit vortex rings as vehicles for energy transport from locations of body bending to regions where interacting pairs of opposite-sign vortex rings accelerate the flow into linear propulsive jets. These findings support efforts toward soft robotic biomimetic propulsion. Full article
(This article belongs to the Special Issue Fluid Dynamic Interactions in Biological and Bioinspired Propulsion)
Show Figures

Figure 1

Open AccessArticle
Passing the Wake: Using Multiple Fins to Shape Forces for Swimming
Biomimetics 2019, 4(1), 23; https://doi.org/10.3390/biomimetics4010023 - 12 Mar 2019
Cited by 1
Abstract
Fish use coordinated motions of multiple fins and their body to swim and maneuver underwater with more agility than contemporary unmanned underwater vehicles (UUVs). The location, utilization and kinematics of fins vary for different locomotory tasks and fish species. The relative position and [...] Read more.
Fish use coordinated motions of multiple fins and their body to swim and maneuver underwater with more agility than contemporary unmanned underwater vehicles (UUVs). The location, utilization and kinematics of fins vary for different locomotory tasks and fish species. The relative position and timing (phase) of fins affects how the downstream fins interact with the wake shed by the upstream fins and body, and change the magnitude and temporal profile of the net force vector. A multifin biorobotic experimental platform and a two-dimensional computational fluid dynamic simulation were used to understand how the propulsive forces produced by multiple fins were affected by the phase and geometric relationships between them. This investigation has revealed that forces produced by interacting fins are very different from the vector sum of forces from combinations of noninteracting fins, and that manipulating the phase and location of multiple interacting fins greatly affect the magnitude and shape of the produced propulsive forces. The changes in net forces are due, in large part, to time-varying wakes from dorsal and anal fins altering the flow experienced by the downstream body and caudal fin. These findings represent a potentially powerful means of manipulating the swimming forces produced by multifinned robotic systems. Full article
(This article belongs to the Special Issue Fluid Dynamic Interactions in Biological and Bioinspired Propulsion)
Show Figures

Graphical abstract

Back to TopTop