Bioinspired Superhydrophobic Surfaces: Challenges, Solutions and Applications

A special issue of Biomimetics (ISSN 2313-7673). This special issue belongs to the section "Biomimetic Surfaces and Interfaces".

Deadline for manuscript submissions: 20 September 2025 | Viewed by 1880

Special Issue Editor


E-Mail Website
Guest Editor
Mechanical Engineering, University of Massachusetts Dartmouth, North Dartmouth, MA, USA
Interests: experimental fluid dynamics; super-hydrophobic surface; collective behavior
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Inspired by the lotus leaf, highly water-repellent superhydrophobic surfaces (SHSs) are garnering increased interest due to their wide engineering and biomedical applications, such as drag reduction, heat and mass transfer enhancement, and anti-corrosion, anti-icing, and anti-fouling activities. Among these applications, maintaining a stable layer of gas within the surface texture of the SHS is crucial. The gas layer not only reduces the contact area between the liquid and solid but also enables the liquid to slip along the surface. Without trapped gas, the SHS becomes a regular rough surface and loses most of its functions. However, the stability of gas on SHSs is affected by many factors, including pressure, gas diffusion, and turbulent flows, limiting the broad application of SHSs. Understanding and enhancing the stability of SHSs are currently urgent tasks that must be undertaken by the scientific community. This Special Issue aims to collect contributions on three key topics: (i) experimental and numerical studies that seek to fundamentally understand interactions between SHSs and surrounding environments; (ii) innovative solutions that enhance the stability and longevity of SHSs; and (iii) novel applications of SHSs, such as reducing drag in high-Reynolds-number turbulent flows.

Dr. Hangjian Ling
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomimetics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • superhydrophobic surface
  • plastron stability
  • plastron restoration
  • gas diffusion
  • wetting and de-wetting
  • drag reduction
  • turbulent flows

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 6262 KiB  
Article
Effect of Surfactant on Bubble Formation on Superhydrophobic Surface in Quasi-Static Regime
by Hangjian Ling, John Ready and Daniel O’Coin
Biomimetics 2025, 10(6), 382; https://doi.org/10.3390/biomimetics10060382 - 7 Jun 2025
Viewed by 568
Abstract
We experimentally studied the effect of a surfactant on bubble formation on a superhydrophobic surface (SHS). The bubble was created by injecting gas through an orifice on the SHS at a constant flow rate in the quasi-static regime. The surfactant, 1-pentanol, was mixed [...] Read more.
We experimentally studied the effect of a surfactant on bubble formation on a superhydrophobic surface (SHS). The bubble was created by injecting gas through an orifice on the SHS at a constant flow rate in the quasi-static regime. The surfactant, 1-pentanol, was mixed with water at concentration C ranging from 0 to 0.08 mol/L, corresponding to surface tension σ ranging from 72 to 43 mN/m. We found that as C increased, the bubble detachment volume (Vd) and maximum bubble base radius (Rdmax) decreased. For a low surfactant concentration, the static contact angle θ0 remained nearly constant, and Vd and Rdmax decreased due to lower surface tensions, following the scaling laws Rdmax~σ1/2 and Vd~σ3/2. The bubble shapes at different concentrations were self-similar. The bubble height, bubble base radius, radius at the bubble apex, and neck radius all scaled with the capillary length. For high surfactant concentrations, however, θ0 was greatly reduced, and Vd and Rdmax decreased due to the combined effects of reduced θ0 and smaller σ. Lastly, we found that the surfactant had a negligible impact on the forces acting on the bubble, except for reducing their magnitudes, and had little effect on the dynamics of bubble pinch-off, except for reducing the time and length scales. Overall, our results provide a better understanding of bubble formation on complex surfaces in complex liquids. Full article
Show Figures

Figure 1

18 pages, 12819 KiB  
Article
Investigation of Droplet Spreading and Rebound Dynamics on Superhydrophobic Surfaces Using Machine Learning
by Samo Jereb, Jure Berce, Robert Lovšin, Matevž Zupančič, Matic Može and Iztok Golobič
Biomimetics 2025, 10(6), 357; https://doi.org/10.3390/biomimetics10060357 - 1 Jun 2025
Viewed by 626
Abstract
The spreading and rebound of impacting droplets on superhydrophobic interfaces is a complex phenomenon governed by the interconnected contributions of surface, fluid and environmental factors. In this work, we employed a collection of 1498 water–glycerin droplet impact experiments on monolayer-functionalized laser-structured aluminum samples [...] Read more.
The spreading and rebound of impacting droplets on superhydrophobic interfaces is a complex phenomenon governed by the interconnected contributions of surface, fluid and environmental factors. In this work, we employed a collection of 1498 water–glycerin droplet impact experiments on monolayer-functionalized laser-structured aluminum samples to train, validate and optimize a machine learning regression model. To elucidate the role of each influential parameter, we analyzed the model-predicted individual parameter contributions on key descriptors of the phenomenon, such as contact time, maximum spreading coefficient and rebound efficiency. Our results confirm the dominant contribution of droplet impact velocity while highlighting that the droplet spreading phase appears to be independent of surface microtopography, i.e., the depth and width of laser-made features. Interestingly, once the rebound transitions to the retraction stage, the importance of the unwetted area fraction is heightened, manifesting in higher rebound efficiency on samples with smaller distances between laser-fabricated microchannels. Finally, we exploited the trained models to develop empirical correlations for predicting the maximum spreading coefficient and rebound efficiency, both of which strongly outperform the currently published models. This work can aid future studies that aim to bridge the gap between the observed macroscale surface-droplet interactions and the microscale properties of the interface or the thermophysical properties of the fluid. Full article
Show Figures

Figure 1

14 pages, 6772 KiB  
Article
Water Impact on Superhydrophobic Surface: One Hydrophilic Spot Morphing and Controlling Droplet Rebounce
by Jiali Guo, Haoran Zhao, Ching-Wen Lou and Ting Dong
Biomimetics 2025, 10(5), 319; https://doi.org/10.3390/biomimetics10050319 - 15 May 2025
Viewed by 450
Abstract
Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable [...] Read more.
Motion control of droplets undergoing collisions with solid surface is required in a number of technological and industrial situations. Droplet dynamics after lifting off is often unpredictable, leading to a major problem in many technologies that droplets move in uncontrolled and potentially undesirable ways. Herein, this work shows that well-designed surface chemistry can produce an accurate control of force transmission to impinging droplets, permitting precise controlled droplet rebounce. The non-wetting surfaces (superhydrophobic), which mimics the water-repellent mechanism of lotus leaves via micro-to-nanoscale hierarchical morphology, with patterned “defect” of extreme wettability (hydrophilic), are synthesized by photolithography using only one inexpensive fluorine-free reagent (methyltrichlorosilane). The contact line of impinging droplet during flatting and receding is free to move on the superhydrophobic region and pinned as it meets with the hydrophilic defect, which introduces a net surface tension force allowing patterned droplet deposition, controlled droplet splitting, and directed droplet rebound. The work also achieves controlled vertical rebound of impinging droplets on inclined surfaces by controlling defect’s size, impact position, and impact velocity. This research demonstrates pinning forces as a general strategy to attain sophisticated droplet motions, which opens an avenue in future explorations, such as matter transportation, energy transformation, and object actuation. Full article
Show Figures

Figure 1

Back to TopTop