The Role of Extracellular Vesicles in Cancer Metastasis

A special issue of Biology (ISSN 2079-7737). This special issue belongs to the section "Cancer Biology".

Deadline for manuscript submissions: closed (9 December 2024) | Viewed by 3762

Special Issue Editor


E-Mail Website
Guest Editor
The Medical School, University of Sheffield, Sheffield S10 2TN, UK
Interests: mechanisms that regulate EV release from tumour cells

Special Issue Information

Dear Colleagues,

We are compiling a Special Issue focused on the role of extracellular vesicles (EVs) in cancer metastasis to be published in Biology. EVs are membrane-bound vesicles that transport functional biomolecules between cells for intercellular communication, and their role in pathophysiology is an emerging field. In several cancers, tumor-derived EVs can provide a sequestered environment for cargo destined for specific cells in the local microenvironment or at distant sites to facilitate cancer survival, progression and metastasis.

In this Special Issue of Biology, we welcome research articles or reviews that showcase recent developments in our understanding of how EVs affect cancer progression and metastasis. We are interested in high-quality original submissions that address, but are not limited to, the following topics:

  • EVs and the modulation of the tumour microenvironment
  • EV-mediated immunosuppression
  • EV and cancer progression
  • Premetastatic niche formation and metastasis
  • Liquid biopsies and biomarkers

Dr. Karan Shah
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biology is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • extracellular vesicles
  • exosomes
  • microvesicles
  • cancer
  • tumour microenvironment
  • metastasis

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

21 pages, 4369 KiB  
Article
Development of Liver-Targeting αVβ5+ Exosomes as Anti-TGF-β Nanocarriers for the Treatment of the Pre-Metastatic Niche
by Paloma Acosta Montaño, Eréndira Olvera Félix, Veronica Castro Flores, Arturo Hernández García, Ruben D. Cadena-Nava, Octavio Galindo Hernández, Patricia Juárez and Pierrick G. J. Fournier
Biology 2024, 13(12), 1066; https://doi.org/10.3390/biology13121066 - 19 Dec 2024
Viewed by 1376
Abstract
Liver metastases frequently occur in pancreatic and colorectal cancer. Their development is promoted by tumor-derived exosomes with the integrin αVβ5 on their membrane. This integrin directs exosomes to the liver, where they promote a TGF-β-dependent pre-metastatic niche. We proposed the [...] Read more.
Liver metastases frequently occur in pancreatic and colorectal cancer. Their development is promoted by tumor-derived exosomes with the integrin αVβ5 on their membrane. This integrin directs exosomes to the liver, where they promote a TGF-β-dependent pre-metastatic niche. We proposed the development of αVβ5+ exosomes to deliver anti-TGF-β therapy to the liver. This study demonstrates that the overexpression of αVβ5 in 293T cells allows its transfer to the secreted exosomes. αVβ5 overexpression increases exosome delivery to the liver, and αVβ5+ exosomes accumulate more in the liver compared to the lungs, kidneys, and brain in mice. We then sought 293T cells to directly produce and load an anti-TGF-β agent in their exosomes. First, we transduced 293T cells to express shRNAs against Tgfb1; however, the exosomes isolated from these cells did not knock down Tgfb1 in treated macrophages in vitro. However, when 293T expressed an mRNA coding a soluble form of betaglycan (sBG), a TGF-β inhibitor, this mRNA was detected in the isolated exosomes and the protein in the conditioned media of macrophages treated in vitro. In turn, this conditioned media decreased the TGF-β-induced phosphorylation of SMAD2/3 in hepatic cells in vitro. Our findings suggest that αVβ5+ exosomes could serve as nanocarriers for liver-targeted anti-TGF-β therapies. Full article
(This article belongs to the Special Issue The Role of Extracellular Vesicles in Cancer Metastasis)
Show Figures

Figure 1

Review

Jump to: Research

16 pages, 2507 KiB  
Review
Prospects and Current Challenges of Extracellular Vesicle-Based Biomarkers in Cancer
by Samuel R. Lawrence and Karan M. Shah
Biology 2024, 13(9), 694; https://doi.org/10.3390/biology13090694 - 4 Sep 2024
Cited by 3 | Viewed by 1804
Abstract
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout [...] Read more.
Cancer continues to impose a substantial global health burden, particularly among the elderly, where the ongoing global demographic shift towards an ageing population underscores the growing need for early cancer detection. This is essential for enabling personalised cancer care and optimised treatment throughout the disease course to effectively mitigate the increasing societal impact of cancer. Liquid biopsy has emerged as a promising strategy for cancer diagnosis and treatment monitoring, offering a minimally invasive method for the isolation and molecular profiling of circulating tumour-derived components. The expansion of the liquid biopsy approach to include the detection of tumour-derived extracellular vesicles (tdEVs) holds significant therapeutic opportunity. Evidence suggests that tdEVs carry cargo reflecting the contents of their cell-of-origin and are abundant within the blood, exhibiting superior stability compared to non-encapsulated tumour-derived material, such as circulating tumour nucleic acids and proteins. However, despite theoretical promise, several obstacles hinder the translation of extracellular vesicle-based cancer biomarkers into clinical practice. This critical review assesses the current prospects and challenges facing the adoption of tdEV biomarkers in clinical practice, offering insights into future directions and proposing strategies to overcome translational barriers. By addressing these issues, EV-based liquid biopsy approaches could revolutionise cancer diagnostics and management. Full article
(This article belongs to the Special Issue The Role of Extracellular Vesicles in Cancer Metastasis)
Show Figures

Figure 1

Back to TopTop