Pathology–Therapeutics–Medicine of Vascular and Respiratory Diseases: Recent Progress Using CFD and AI

A special issue of Bioengineering (ISSN 2306-5354). This special issue belongs to the section "Biomedical Engineering and Biomaterials".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 932

Special Issue Editors

Department of Mechanical and Materials Engineering, Wright State University, Dayton, OH 45435, USA
Interests: computational and experimental fluid dynamics; biofluidic and biomechanics; particle image velocimetry; multiphase flow modeling; fluid–solid interaction modeling; discrete phase models; non-Newtonian fluid modeling; fire models; machine learning and deep learning
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20903, USA
Interests: computational fluid particle dynamics; advanced numerical methods; noninvasive pulmonary disease diagnosis and treatment; multiphase flow modeling; pharmaceutical continuous manufacturing; flowsheet modeling

Special Issue Information

Dear Colleagues,

Vascular and respiratory diseases are two leading causes of death worldwide, and it has been widely recognized that fluid transport phenomena, including the synergistic study of mass, momentum, heat transfer, thermodynamics and the kinetics of chemical reactions, have key roles in investigating the mechanisms of pathophysiology–therapeutics–medicine for such diseases. As a noninvasive and promising alternative, mathematical models and computational methods can help us greatly in understanding these complicated pathological mechanisms and therapeutic strategies, bridging the gap from lab to clinic and building future digital twin systems. Contributions including case studies, original and unpublished research, and systematic reviews within this scope are welcome, including preliminary studies of model construction and developments and applications of novel computational/mathematical methods/AI algorithms. Other on-site/ in vivo/in vitro experimental contributions supporting, developing, and validating the associated numerical methods and models are also welcome.

Dr. Hang Yi
Dr. Jianan Zhao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Bioengineering is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biofluids
  • biomechanics
  • drug delivery
  • medical device
  • pathophysiology
  • intervention
  • therapeutics
  • medicine
  • hemodynamics
  • neurovascular and cardiovascular diseases
  • respiratory airway diseases
  • computational fluid dynamics
  • multiphase/multispecies flow modeling
  • physiologically based pharmacokinetic/toxicokinetic models
  • machine learning and deep learning in healthcare

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 6416 KiB  
Article
Prediction of the Atomization Process in Respimat® Soft MistTM Inhalers Using a Volume of Fluid-to-Discrete Phase Model
by Ted Sperry and Yu Feng
Bioengineering 2025, 12(3), 264; https://doi.org/10.3390/bioengineering12030264 - 6 Mar 2025
Viewed by 664
Abstract
This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface [...] Read more.
This study investigates the atomization process in Respimat® Soft MistTM Inhalers (SMIs) using a validated Volume of Fluid (VOF)-to-Discrete Phase Model (DPM) to simulate the transition from colliding liquid jets to aerosolized droplets. Key parameters, including colliding jet inlet velocity, surface tension, and liquid viscosity, were systematically varied to analyze their impact on the atomization, i.e., aerosolized droplet size distributions. The VOF-to-DPM simulation results indicate that higher jet inlet velocities enhance ligament fragmentation, producing finer and more uniform droplets while reducing total atomized droplet mass. The relationship between surface tension and atomization performance in colliding jet atomization is not monotonic. Reducing surface tension plays a complex dual role in the atomization process. On the one hand, lower surface tension enhances the likelihood of liquid jet breakup into a liquid sheet, leading to the formation of smaller ligaments under the same airflow conditions and shear forces. This increases the probability of generating more secondary droplets. On the other hand, reduced surface tension also destabilizes the liquid surface shape, decreasing the formation of fine, high-sphericity droplets in regimes where surface tension is a dominant force. Viscosity also influences atomization through complex mechanisms, i.e., lower viscosity reduces resistance to ligament breakup but promotes droplet interactions and coalescence, while higher viscosity suppresses ligament fragmentation, generating larger droplets and reducing atomization efficiency. The validated VOF-to-DPM framework provides critical insights for enhancing the performance and efficiency of inhalation therapies. Future work will incorporate nozzle geometry, jet impingement angles, and surfactant effects to better understand and optimize the atomization process in SMIs, focusing on achieving preferred droplet size distributions and emitted doses for enhanced drug delivery efficiency in human respiratory systems. Full article
Show Figures

Figure 1

Back to TopTop