Recent Progress in All-Solid-State Lithium Batteries

A special issue of Batteries (ISSN 2313-0105). This special issue belongs to the section "Battery Materials and Interfaces: Anode, Cathode, Separators and Electrolytes or Others".

Deadline for manuscript submissions: closed (30 November 2023) | Viewed by 10729

Special Issue Editors


E-Mail Website
Guest Editor
Battery Technologies, Austrian Institute of Technology, Giefingasse 2, 1210 Vienna, Austria
Interests: solid state batteries; lithium metal batteries; Li-S batteries; solar battery
Battery Technologies, Austrian Institute of Technology, Giefingasse 2, 1210 Vienna, Austria
Interests: lithium-ion battery; non-lithium-ion battery; solid glassy electrolytes; ceramic materials; solid-state battery; aqueous rechargeable battery; lithium metal anode; surface modification of electrodes

Special Issue Information

Dear Colleagues,

The present Special Issue in the Batteries journal is dedicated to the development of future solid-state batteries. New studies about solid electrolytes (SEs) and their properties are welcome, especially in relation to:

  • Ceramic SEs: synthesis, electrochemical properties, chemical stability, new functional groups;
  • Polymer and gel polymer SEs: synthesis, mechanism of polymerization, lithium-ion diffusion mechanism, the role of plasticizers;
  • Hybrid ceramic polymer SE composites: the role of ceramic filler, lithium diffusion mechanisms;
  • The mechanism and formation of lithium metal–solid electrolyte and cathode–solid electrolyte interfaces: side reactions, lithium dendrite formation, degassing;
  • Safety: moisture stability, hazardous gases control, thermo-stability;
  • SE processing: scalability, industrial production, battery pack design.

We would like to invite interested authors to submit their original experimental, theoretical, and review papers focusing on the subject for inclusion in this Special issue.

We look forward to receiving your valuable research output on this research topic.

Dr. Andrea Paolella
Dr. Artur Tron
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Batteries is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • solid electrolyte
  • ceramics
  • polymers
  • hybrids
  • solid-state battery
  • lithium metal
  • interfaces

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

22 pages, 5307 KiB  
Article
Co-Sintering of Li1.3Al0.3Ti1.7(PO4)3 and LiFePO4 in Tape-Casted Composite Cathodes for Oxide Solid-State Batteries
by Jean Philippe Beaupain, Katja Waetzig, Henry Auer, Nicolas Zapp, Kristian Nikolowski, Mareike Partsch, Mihails Kusnezoff and Alexander Michaelis
Batteries 2023, 9(11), 543; https://doi.org/10.3390/batteries9110543 - 2 Nov 2023
Cited by 1 | Viewed by 2340
Abstract
Solid-state batteries (SSBs) with Li-ion conductive electrolytes made from polymers, thiophosphates (sulfides) or oxides instead of liquid electrolytes have different challenges in material development and manufacturing. For oxide-based SSBs, the co-sintering of a composite cathode is one of the main challenges. High process [...] Read more.
Solid-state batteries (SSBs) with Li-ion conductive electrolytes made from polymers, thiophosphates (sulfides) or oxides instead of liquid electrolytes have different challenges in material development and manufacturing. For oxide-based SSBs, the co-sintering of a composite cathode is one of the main challenges. High process temperatures cause undesired decomposition reactions of the active material and the solid electrolyte. The formed phases inhibit the high energy and power density of ceramic SSBs. Therefore, the selection of suitable material combinations as well as the reduction of the sintering temperatures are crucial milestones in the development of ceramic SSBs. In this work, the co-sintering behavior of Li1.3Al0.3Ti1.7(PO4)3 (LATP) as a solid electrolyte with Li-ion conductivity of ≥0.38 mS/cm and LiFePO4 with a C-coating (LFP) as a Li-ion storage material (active material) is investigated. The shrinkage behavior, crystallographic analysis and microstructural changes during co-sintering at temperatures between 650 and 850 °C are characterized in a simplified model system by mixing, pressing and sintering the LATP and LFP and compared with tape-casted composite cathodes (d = 55 µm). The tape-casted and sintered composite cathodes were infiltrated by liquid electrolyte as well as polyethylene oxide (PEO) electrolyte and electrochemically characterized as half cells against a Li metal anode. The results indicate the formation of reaction layers between LATP and LFP during co-sintering. At Ts > 750 °C, the rhombohedral LATP phase is transformed into an orthorhombic Li1.3+xAl0.3−yFex+yTi1.7−x(PO4)3 (LAFTP) phase. During co-sintering, Fe3+ diffuses into the LATP phase and partially occupies the Al3+ and Ti4+ sites of the NASICON structure. The formation of this LAFTP leads to significant changes in the electrochemical properties of the infiltrated composite tapes. Nevertheless, a high specific capacity of 134 mAh g−1 is measured by infiltrating the sintered composite tapes with liquid electrolytes. Additionally, infiltration with a PEO electrolyte leads to a capacity of 125 mAh g−1. Therefore, the material combination of LATP and LFP is a promising approach to realize sintered ceramic SSBs. Full article
(This article belongs to the Special Issue Recent Progress in All-Solid-State Lithium Batteries)
Show Figures

Graphical abstract

16 pages, 3832 KiB  
Article
New Insights of Infiltration Process of Argyrodite Li6PS5Cl Solid Electrolyte into Conventional Lithium-Ion Electrodes for Solid-State Batteries
by Artur Tron, Andrea Paolella and Alexander Beutl
Batteries 2023, 9(10), 503; https://doi.org/10.3390/batteries9100503 - 4 Oct 2023
Cited by 1 | Viewed by 3520
Abstract
All-solid-state lithium-ion batteries based on solid electrolytes are attractive for electric applications due to their potential high energy density and safety. The sulfide solid electrolyte (e.g., argyrodite) shows a high ionic conductivity (10−3 S cm−1). There is an open question [...] Read more.
All-solid-state lithium-ion batteries based on solid electrolytes are attractive for electric applications due to their potential high energy density and safety. The sulfide solid electrolyte (e.g., argyrodite) shows a high ionic conductivity (10−3 S cm−1). There is an open question related to the sulfide electrode’s fabrication by simply infiltrating methods applied for conventional lithium-ion battery electrodes via homogeneous solid electrolyte solutions, the structure of electrolytes after drying, chemical stability of binders and electrolyte, the surface morphology of electrolyte, and the deepening of the infiltrated electrolyte into the active materials to provide better contact between the active material and electrolyte and favorable lithium ionic conduction. However, due to the high reactivity of sulfide-based solid electrolytes, unwanted side reactions between sulfide electrolytes and polar solvents may occur. In this work, we explore the chemical and electrochemical properties of the argyrodite-based film produced by infiltration mode by combining electrochemical and structural characterizations. Full article
(This article belongs to the Special Issue Recent Progress in All-Solid-State Lithium Batteries)
Show Figures

Graphical abstract

23 pages, 7299 KiB  
Article
A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2
by Martina Romio, Yuri Surace, Andreas Mautner, Raad Hamid, Marcus Jahn, Damian M. Cupid and Isaac Abrahams
Batteries 2023, 9(7), 342; https://doi.org/10.3390/batteries9070342 - 25 Jun 2023
Cited by 2 | Viewed by 1561
Abstract
Magnesium-ion batteries represent promising environmentally sustainable energy-storage systems with higher energy densities than their lithium counterparts. In this work, the charge storage mechanisms of the olivine-related compound (Mg0.5Ni0.5)3(PO4)2 using Mg2+ and Li+ [...] Read more.
Magnesium-ion batteries represent promising environmentally sustainable energy-storage systems with higher energy densities than their lithium counterparts. In this work, the charge storage mechanisms of the olivine-related compound (Mg0.5Ni0.5)3(PO4)2 using Mg2+ and Li+ ions were investigated and compared for the first time when copper was chosen as the current collector. A comprehensive physicochemical and electrochemical characterization was performed on the pristine powder and electrodes at different states of charge. Although (Mg0.5Ni0.5)3(PO4)2 is electrochemically active, it undergoes irreversible conversion reactions in both Mg and Li chemistries. The conversion reactions proceed with an ionic exchange between structural Ni2+ and Mg2+ or Li+ cations, which results in the formation of sarcopside-Mg3(PO4)2, a Cu–Ni alloy and poorly crystalline Li3PO4, respectively. A capacity of 600 mA h g−1 was achieved with a Li metal counter electrode in the Li cell since the conversion reaction could go to completion. A capacity of 92 mA h g−1 was delivered in the Mg cell using an activated carbon counter electrode. These findings shed light on the fundamental mechanism of activity in olivine-related compounds, underlining the importance of performing systematic studies to unveil the complex interactions between both single-valent and multivalent ions with novel structures. Full article
(This article belongs to the Special Issue Recent Progress in All-Solid-State Lithium Batteries)
Show Figures

Figure 1

Back to TopTop