A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2
Abstract
:1. Introduction
2. Results
2.1. Physico-Chemical Characterisation of MNP Pristine Powder
2.2. Electrochemical Testing
2.2.1. Preliminary Evaluation of the Electrochemical Activity of MNP
2.2.2. The Electrochemical Activity of MNP with Mg2+ Ions
2.2.3. The Electrochemical Activity of MNP with Li+ Ions
3. Discussion
4. Materials and Methods
4.1. MNP Synthesis
4.2. Materials Characterisation
4.3. Electrochemical Tests
4.4. Ex-Situ Characterisation
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Word Economic Situation and Prospects. Available online: https://unctad.org/system/files/official-document/wesp2019_en.pdf (accessed on 3 April 2023).
- Skundin, A.M.; Kulova, T.L.; Yaroslavtsev, A.B. Sodium-Ion Batteries (a Review). Russ. J. Electrochem. 2018, 54, 113–152. [Google Scholar] [CrossRef]
- Gummow, R.J.; Vamvounis, G.; Kannan, M.B.; He, Y. Calcium-Ion Batteries: Current State-of-the-Art and Future Perspectives. Adv. Mater. 2018, 30, 1801702. [Google Scholar] [CrossRef] [PubMed]
- Selvakumaran, D.; Pan, A.; Liang, S.; Cao, G. A review on recent developments and challenges of cathode materials for rechargeable aqueous Zn-ion batteries. J. Mater. Chem. A 2019, 7, 18209–18236. [Google Scholar] [CrossRef]
- Leisegang, T.; Meutzner, F.; Zschornak, M.; Münchgesang, W.; Schmid, R.; Nestler, T.; Eremin, R.A.; Kabanov, A.A.; Blatov, V.A.; Meyer, D.C. The Aluminum-Ion Battery: A Sustainable and Seminal Concept? Front. Chem. 2019, 7, 268. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment Programme, Recycling Rates of Metals: A Status Report. Available online: https://wedocs.unep.org/20.500.11822/8702 (accessed on 3 April 2023).
- Davidson, R.; Verma, A.; Santos, D.; Hao, F.; Fincher, C.; Xiang, S.; Van Buskirk, J.; Xie, K.; Pharr, M.; Mukherjee, P.P.; et al. Formation of Magnesium Dendrites during Electrodeposition. ACS Energy Lett. 2019, 4, 375–376. [Google Scholar] [CrossRef]
- Yoo, H.D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Mg rechargeable batteries: An on-going challenge. Energy Environ. Sci. 2013, 6, 2265–2279. [Google Scholar] [CrossRef]
- Huie, M.M.; Bock, D.C.; Takeuchi, E.S.; Marschilok, A.C.; Takeuchi, K.J. Cathode materials for magnesium and magnesium-ion based batteries. Coord. Chem. Rev. 2015, 287, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Kuang, C.; Zeng, W.; Li, Y. A review of Electrode for Rechargeable Magnesium Ion Batteries. J. Nanosci. Nanotechnol. 2019, 19, 12–25. [Google Scholar] [CrossRef]
- Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Prototype systems for rechargeable magnesium batteries. Nature 2000, 407, 724. [Google Scholar] [CrossRef]
- Levi, M.D.; Lancry, E.; Gizbar, H.; Lu, Z.; Levi, E.; Gofer, Y.; Aurbach, D. Kinetic and Thermodynamic Studies of Mg2+ and Li+ Ion Insertion into the Mo6S8 Chevrel Phase. J. Electrochem. Soc. 2004, 151, A1044. [Google Scholar] [CrossRef]
- Ichitsubo, T.; Yagi, S.; Nakamura, R.; Ichikawa, Y.; Okamoto, S.; Sugimura, K.; Kawaguchi, T.; Kitada, A.; Oishi, M.; Doi, T.; et al. A new aspect of Chevrel compounds as positive electrodes for magnesium batteries. J. Mater. Chem. A 2014, 2, 14858–14866. [Google Scholar] [CrossRef]
- Novák, P.; Desilvestro, J. Electrochemical Insertion of Magnesium in Metal Oxides and Sulfides from Aprotic Electrolytes. J. Electrochem. Soc. 1993, 140, 140–144. [Google Scholar] [CrossRef]
- Sai Gautam, G.; Canepa, P.; Abdellahi, A.; Urban, A.; Malik, R.; Ceder, G. The Intercalation Phase Diagram of Mg in V2O5 from First-Principles. Chem. Mater. 2015, 27, 3733–3742. [Google Scholar] [CrossRef] [Green Version]
- Sai Gautam, G.; Canepa, P.; Richards, W.D.; Malik, R.; Ceder, G. Role of Structural H2O in Intercalation Electrodes: The Case of Mg in Nanocrystalline Xerogel-V2O5. Nano Lett. 2016, 16, 2426–2431. [Google Scholar] [CrossRef] [Green Version]
- Rasul, S.; Suzuki, S.; Yamaguchi, S.; Miyayama, M. Manganese oxide octahedral molecular sieves as insertion electrodes for rechargeable Mg batteries. Electrochim. Acta 2013, 110, 247–252. [Google Scholar] [CrossRef]
- Nam, K.W.; Kim, S.; Lee, S.; Salama, M.; Shterenberg, I.; Gofer, Y.; Kim, J.S.; Yang, E.; Park, C.S.; Kim, J.S.; et al. The High Performance of Crystal Water Containing Manganese Birnessite Cathodes for Magnesium Batteries. Nano Lett. 2015, 15, 4071–4079. [Google Scholar] [CrossRef]
- Jain, A.; Ong, S.P.; Hautier, G.; Chen, W.; Richards, W.D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.; et al. Commentary: The Materials Project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 11002. [Google Scholar] [CrossRef] [Green Version]
- Spahr, M.E.; Novák, P.; Haas, O.; Nesper, R. Electrochemical insertion of lithium, sodium, and magnesium in molybdenum(VI) oxide. J. Power Sources 1995, 54, 346–351. [Google Scholar] [CrossRef]
- Dueber, R.E.; Fleetwood, J.M.; Dickens, P.G. The insertion of magnesium into α-U3O8. Solid State Ion. 1992, 50, 329–337. [Google Scholar] [CrossRef]
- Levi, E.; Mikhael, L.; Chasid, O.; Aurbach, D. A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries. J. Electroceramics 2009, 22, 13–19. [Google Scholar] [CrossRef]
- Levi, E.; Gofer, Y.; Aurbach, D. On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials. Chem. Mater. 2010, 22, 860–868. [Google Scholar] [CrossRef]
- Gregory, T.D.; Hoffman, R.J.; Winterton, R.C. Nonaqueous Electrochemistry of Magnesium: Applications to Energy Storage. J. Electrochem. Soc. 1990, 137, 775–780. [Google Scholar] [CrossRef]
- Canepa, P.; Sai Gautam, G.; Hannah, D.C.; Malik, R.; Liu, M.; Gallagher, K.G.; Persson, K.A.; Ceder, G. Odyssey of Multivalent Cathode Materials: Open Questions and Future Challenges. Chem. Rev. 2017, 117, 4287–4341. [Google Scholar] [CrossRef] [PubMed]
- Padhi, A.K. Effect of Structure on the Fe3+/Fe2+ Redox Couple in Iron Phosphates. J. Electrochem. Soc. 1997, 144, 1609. [Google Scholar] [CrossRef]
- Padhi, A.K.; Nanjundaswamy, K.S.; Goodenough, J.B. Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries. J. Electrochem. Soc. 1997, 144, 1188–1194. [Google Scholar] [CrossRef]
- Aziam, H.; Tamraoui, Y.; Manoun, B.; Alami, J.; Saadoune, I. Nickel Orthophosphate Ni3(PO4)2: New Conversion-type Anode Material for Lithium ion Batteries. In Proceedings of the 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; pp. 1–4. [Google Scholar] [CrossRef]
- Masquelier, C.; Croguennec, L. Polyanionic (Phosphates, Silicates, Sulfates) Frameworks as Electrode Materials for Rechargeable Li (or Na) Batteries. Chem. Rev. 2013, 113, 6552–6591. [Google Scholar] [CrossRef]
- Zhang, R.; Ling, C. Unveil the Chemistry of Olivine FePO4 as Magnesium Battery Cathode. ACS Appl. Mater. Interfaces 2016, 8, 18018–18026. [Google Scholar] [CrossRef] [PubMed]
- Makino, K.; Katayama, Y.; Miura, T.; Kishi, T. Electrochemical insertion of magnesium to Mg0.5Ti2(PO4)3. J. Power Sources 2001, 99, 66–69. [Google Scholar] [CrossRef]
- Zhong, G.; Bai, J.; Duchesne, P.N.; McDonald, M.J.; Li, Q.; Hou, X.; Tang, J.A.; Wang, Y.; Zhao, W.; Gong, Z.; et al. Copper Phosphate as a Cathode Material for Rechargeable Li Batteries and Its Electrochemical Reaction Mechanism. Chem. Mater. 2015, 27, 5736–5744. [Google Scholar] [CrossRef]
- Zhao, W.; Zhong, G.; Zheng, J.; Zheng, J.; Song, J.; Gong, Z.; Chen, Z.; Zheng, G.; Jiang, Z.; Yang, Y. Insights into the Electrochemical Reaction Mechanism of a Novel Cathode Material CuNi2(PO4)2/C for Li-Ion Batteries. ACS Appl. Mater. Interfaces 2018, 10, 3522–3529. [Google Scholar] [CrossRef]
- Väyrynen, A.; Salminen, J. Lithium ion battery production. J. Chem. Thermodyn. 2012, 46, 80–85. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Nord, A.G.; Stefanidis, T. Crystallographic studies of some olivine-related (Ni, Mg)3(PO4)2 solid solutions. Phys. Chem. Miner. 1983, 10, 10–15. [Google Scholar] [CrossRef]
- Malik, M.; Chan, K.H.; Azimi, G. Review on the synthesis of LiNixMnyCo1-x-yO2 (NMC) cathodes for lithium-ion batteries. Mater. Today Energy 2022, 28, 101066. [Google Scholar] [CrossRef]
- Zhang, R.; Ling, C. Status and challenge of Mg battery cathode. MRS Energy Sustain. 2016, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Buvaneswari, G.; Varadaraju, U.V. Synthesis of New Network Phosphates with NZP Structure. J. Solid State Chem. 1999, 145, 227–234. [Google Scholar] [CrossRef]
- Łodziński, M.; Sitarz, M. Chemical and spectroscopic characterization of some phosphate accessory minerals from pegmatites of the Sowie Góry Mts, SW Poland. J. Mol. Struct. 2009, 924–926, 442–447. [Google Scholar] [CrossRef]
- Essehli, R.; El Bali, B.; Benmokhtar, S.; Fejfarová, K.; Dusek, M. Hydrothermal synthesis, structural and physico-chemical characterizations of two Nasicon phosphates: M0.50IITi2(PO4)3 (M=Mn, Co). Mater. Res. Bull. 2009, 44, 1502–1510. [Google Scholar] [CrossRef]
- Aatiq, A.; Marchoud, A.; Bellefqih, H.; Tigha, M.R. Structural and Raman spectroscopic studies of the two M0.50SbFe(PO4)3 (M = Mg, Ni) NASICON phases. Powder Diffr. 2017, 32, S40–S51. [Google Scholar] [CrossRef]
- Ait Salah, A.; Jozwiak, P.; Zaghib, K.; Garbarczyk, J.; Gendron, F.; Mauger, A.; Julien, C.M. FTIR features of lithium-iron phosphates as electrode materials for rechargeable lithium batteries. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2006, 65, 1007–1013. [Google Scholar] [CrossRef]
- Salah, A.A.; Jozwiak, P.; Garbarczyk, J.; Benkhouja, K.; Zaghib, K.; Gendron, F.; Julien, C.M. Local structure and redox energies of lithium phosphates with olivine- and Nasicon-like structures. J. Power Sources 2005, 140, 370–375. [Google Scholar] [CrossRef]
- Felker, D.L.; Sherwood, P.M.A. Magnesium Phosphate (Mg3(PO4)2) by XPS. Surf. Sci. Spectra 2002, 9, 83–90. [Google Scholar] [CrossRef]
- Hart, J.N.; May, P.W.; Allan, N.L.; Hallam, K.R.; Claeyssens, F.; Fuge, G.M.; Ruda, M.; Heard, P.J. Towards new binary compounds: Synthesis of amorphous phosphorus carbide by pulsed laser deposition. J. Solid State Chem. 2013, 198, 466–474. [Google Scholar] [CrossRef]
- Liu, A.; Zhu, J.; Han, J.; Wu, H.; Gao, W. Influence of Phosphorus Doping Level and Acid Pretreatment on the Voltammetric Behavior of Phosphorus Incorporated Tetrahedral Amorphous Carbon Film Electrodes. Electroanalysis 2007, 19, 1773–1778. [Google Scholar] [CrossRef]
- Alla, S.K.; Verma, A.D.; Kumar, V.; Mandal, R.K.; Sinha, I.; Prasad, N.K. Solvothermal synthesis of CuO–MgO nanocomposite particles and their catalytic applications. RSC Adv. 2016, 6, 61927–61933. [Google Scholar] [CrossRef]
- Khairallah, F.; Glisenti, A.; Natile, M.M.; Galenda, A. CuO/MgO Nanocomposites by Wet Impregnation: An XPS Study. Surf. Sci. Spectra 2012, 19, 23–29. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Grosvenor, A.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730. [Google Scholar] [CrossRef]
- Biesinger, M.C.; Payne, B.P.; Lau, L.W.M.; Gerson, A.R.; Smart, R.S.C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 2009, 41, 324–332. [Google Scholar] [CrossRef]
- Grosvenor, A.P.; Biesinger, M.C.; Smart, R.S.C.; McIntyre, N.S. New interpretations of XPS spectra of nickel metal and oxides. Surf. Sci. 2006, 600, 1171–1779. [Google Scholar] [CrossRef]
- Mirghni, A.A.; Madito, M.J.; Oyedotun, K.O.; Masikhwa, T.M.; Ndiaye, N.M.; Ray, S.J.; Manyala, N. A high energy density asymmetric supercapacitor utilizing a nickel phosphate/graphene foam composite as the cathode and carbonized iron cations adsorbed onto polyaniline as the anode. RSC Adv. 2018, 8, 11608–11621. [Google Scholar] [CrossRef] [Green Version]
- Gu, Y.F.; Federici, J.F. Fabrication of a Flexible Current Collector for Lithium Ion Batteries by Inkjet Printing. Batteries 2018, 4, 42. [Google Scholar] [CrossRef] [Green Version]
- Muldoon, J.; Bucur, C.B.; Gregory, T. Fervent Hype behind Magnesium Batteries: An Open Call to Synthetic Chemists—Electrolytes and Cathodes Needed. Angew. Chem. Int. Ed. 2017, 56, 12064–12084. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Sahadeo, E.; Noked, M.; Lee, S.B. Mapping the Challenges of Magnesium Battery. J. Phys. Chem. Lett. 2016, 7, 1736–1749. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; Anantharaman, T.R. Accurate evaluation of lattice parameters of α-Brasses. Curr. Sci. 1963, 32, 262–263. [Google Scholar]
- Magnusson, H.; Lindberg, F.; Frisk, K. Validating Thermodynamic Description of Copper Oxides and Phosphates by Controlled Oxidation of OFP-Copper. 2015. Available online: https://skb.se/publikation/2485262/R-15-06.pdf (accessed on 3 April 2023).
- Annersten, H.; Nord, A.; Songstad, J.; Rundt, K.; Sjöblom, J.; Strand, T.; Sukhoverkhov, V. A High Pressure Phase of Magnesium Orthophosphate. Acta Chem. Scand. 1980, 34, 389–390. [Google Scholar] [CrossRef]
- Gulyaev, A.P.; Trusova, E.F. Some physical properties of some solid solutions of Al, Fe and Cu. Zh. Tekh. Fiz. 1950, 20, 66–78. [Google Scholar]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R.J. NIST Standard Reference Database 20, Version 3.4. 2003. Available online: http:/srdata.nist.gov/xps/ (accessed on 3 April 2023).
- Li, Z.; Vinayan, B.P.; Jankowski, P.; Njel, C.; Roy, A.; Vegge, T.; Maibach, J.; Lastra, J.M.G.; Fichtner, M.; Zhao-Karger, Z. Multi-Electron Reactions Enabled by Anion-Based Redox Chemistry for High-Energy Multivalent Rechargeable Batteries. Angew. Chem. Int. Ed. 2020, 59, 11483–11490. [Google Scholar] [CrossRef]
- Harcharras, M.; Ennacici, A.; Assaaoudi, H. Vibrational spectra of double diphosphates M2SrP2O7 (M=Li, Na, K, Rb, Cs). Can. J. Anal. Sci. Spectrosc. 2001, 46, 83. [Google Scholar]
- Bih, H.; Saadoune, I.; Ehrenberg, H.; Fuess, H. Crystal structure, magnetic and infrared spectroscopy studies of the LiCryFe1−yP2O7 solid solution. J. Solid State Chem. 2009, 182, 821–826. [Google Scholar] [CrossRef]
- Nallasamy, P.; Mohan, S. Vibrational spectroscopic characterization of form II poly(vinylidene fluoride). Indian J. Pure Appl. Phys. 2005, 43, 821–827. [Google Scholar]
- Burba, C.M.; Frech, R. Local structure in the Li-ion battery cathode material Lix(MnyFe1−y)PO4 for 0<x≤1 and y=0.0, 0.5 and 1.0. J. Power Sources. 2007, 172, 870–876. [Google Scholar] [CrossRef]
- Belov, N.V.; Simonov, M.A.; Bondavera, O.S. Golden Book of Phase Transformation; OQMD: Wroclaw, Poland, 2002; pp. 1–123. [Google Scholar]
- Nayeb-Hashemi, A.A.; Clark, J.B.; Pelton, A.D. The Li-Mg (Lithium-Magnesium) system. Bull. Alloy Phase Diagr. 1984, 5, 365–374. [Google Scholar] [CrossRef]
- Julien, C.; Mauger, A.; Vijh, A.; Zaghib, K. Polyanionic Compounds as Cathode Materials. In Lithium Batteries: Science and Technology; Julien, C., Mauger, A., Vijh, A., Zaghib, K., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 201–268. [Google Scholar] [CrossRef]
- Andersson, A.M.; Abraham, D.P.; Haasch, R.; MacLaren, S.; Liu, J.; Amine, K. Surface Characterization of Electrodes from High Power Lithium-Ion Batteries. J. Electrochem. Soc. 2002, 149, A1358. [Google Scholar] [CrossRef]
- Nikam, R.D.; Kwak, M.; Lee, J.; Rajput, K.G.; Banerjee, W.; Hwang, H. Near ideal synaptic functionalities in Li ion synaptic transistor using Li3POxSex electrolyte with high ionic conductivity. Sci. Rep. 2019, 9, 18883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moulder, J.F.; Stickle, W.F.; Sobol, P.E.; Bomben, K.D. Handbook of X-ray Photoelectron Spectroscopy; Perkin-Elmer Corporation: Waltham, MA, USA, 1993; pp. 34–35. Available online: https://www.hic.ch.ntu.edu.tw/PES/file/%E5%8F%83%E8%80%83%E8%B3%87%E6%96%99/XPS%20handbook.pdf (accessed on 3 April 2023).
- Vijaya Babu, K.; Seeta Devi, L.; Veeraiah, V.; Anand, K. Structural and dielectric studies of LiNiPO4 and LiNi0.5Co0.5PO4 cathode materials for lithium-ion batteries. J. Asian Ceram. Soc. 2016, 4, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Bellamy, L.J. The Infra-Red Spectra of Complex Molecules; Springer: Dordrecht, The Netherlands, 1975. [Google Scholar] [CrossRef]
- GSAS, General Strucuture Analysis System, (Report No. LAUR-86-748). Available online: https://permalink.lanl.gov/object/tr?what=info:lanl-repo/lareport/LA-UR-86-0748_REV (accessed on 3 April 2023).
- Rundlof, H.; Tellgren, R.; Kusigerski, V.; Spasojevic, V.; Rodic, D. Golden Book Phase Transit; OQMD: Wroclaw, Poland, 2002. [Google Scholar]
- Nord, A.G.; Kierkegaard, P. The crystal structure of Mg3(PO4)2. Acta Chem. Scand. 1968, 22, 1466–1474. [Google Scholar] [CrossRef]
- Calvo, C. Refinement of the crystal structure of beta-Mg2P2O7. Phase Transit. 1992, 38, 127–220. [Google Scholar]
- Ruch, P.W.; Cericola, D.; Hahn, M.; Kötz, R.; Wokaun, A. On the use of activated carbon as a quasi-reference electrode in non-aqueous electrolyte solutions. J. Electroanal. Chem. 2009, 636, 128–131. [Google Scholar] [CrossRef]
- Muldoon, J.; Bucur, C.B.; Gregory, T. Quest for Nonaqueous Multivalent Secondary Batteries: Magnesium and Beyond. Chem. Rev. 2014, 114, 11683–11720. [Google Scholar] [CrossRef]
- Yoo, H.D.; Han, S.-D.; Bayliss, R.D.; Gewirth, A.A.; Genorio, B.; Rajput, N.N.; Persson, K.A.; Burrell, A.K.; Cabana, J. “Rocking-Chair”-Type Metal Hybrid Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 30853–30862. [Google Scholar] [CrossRef]
- Gershinsky, G.; Yoo, H.D.; Gofer, Y.; Aurbach, D. Electrochemical and Spectroscopic Analysis of Mg2+ Intercalation into Thin Film Electrodes of Layered Oxides: V2O5 and MoO3. Langmuir 2013, 29, 10964–10972. [Google Scholar] [CrossRef] [PubMed]
Atom | Site | x | y | z | Occ. | Uiso (Å2) |
---|---|---|---|---|---|---|
Ni (1) | 2b | 0 | 0 | 0 | 0.904(5) | 0.0241(6) |
Mg (1) | 2b | 0 | 0 | 0 | 0.096(5) | 0.0241(6) |
Ni (2) | 4e | 0.2610(3) | 0.5165(6) | 0.2234(2) | 0.298(2) | 0.0241(6) |
Mg (2) | 4e | 0.2610(3) | 0.5165(6) | 0.2234(2) | 0.702(2) | 0.0241(6) |
P | 4e | 0.2457(5) | 0.0771(6) | 0.4042(3) | 1 | 0.0215(9) |
O (1) | 4e | 0.7714(10) | 0.2535(10) | 0.1057(6) | 1 | 0.0139(9) |
O (2) | 4e | 0.2421(12) | 0.3098(8) | 0.0447(8) | 1 | 0.0139(9) |
O (3) | 4e | 0.4451(10) | 0.1926(10) | 0.3261(7) | 1 | 0.0139(9) |
O (4) | 4e | 0.0374(11) | 0.2312(9) | 0.3398(7) | 1 | 0.0139 9) |
Potential [V vs. AC] | Phases | Lattice Parameters | Cell Volume | Rwp | Wt.% |
---|---|---|---|---|---|
pristine | (Mg0.5Ni0.5)3(PO4)2, P21/c | a = 5.8809(2) Å b = 4.7060(3) Å c = 10.1656(5) Å β = 90.800(3)° | 281.31(3) Å3 | 0.0226 | 42.71 |
Mg2P2O7, P21/c | a = 6.720(4) Å b = 8.347(5) Å c = 9.032(5) Å β = 113.40(4)° | 464.9(2) Å3 | 3.68 | ||
Cu, Fm−3m | a = 3.61438(8) Å | 47.217(3) Å3 | 53.61 | ||
−2.4 | (Mg0.5Ni0.5)3(PO4)2, P21/c | a = 5.8699(6) Å b = 4.6995(5) Å c = 10.150(1) Å β = 90.76(1)° | 279.96(1) Å3 | 0.0346 | 56.56 |
Sarcopside-Mg3(PO4)2, P21/c | a = 5.844(6) Å b = 4.770(6) Å c = 10.54(1) Å β = 91.80(9)° | 293.7(4) Å3 | 4.47 | ||
Mg2P2O7, P21/c | a = 6.734(8) Å b = 8.333(9) Å c = 9.01(1) Å β = 113.21(8)° | 464.6(4) Å3 | 4.53 | ||
Cu, Fm−3m | a = 3.6118(2) Å | 47.12(1) Å3 | 25.36 | ||
Cu–Ni, Fm−3m | a = 3.6047(3) Å | 46.84(1) Å3 | 9.08 | ||
−0.8 | (Mg0.5Ni0.5)3(PO4)2, P21/c | a = 5.8852(5) Å b = 4.7120(4) Å c = 10.1709(9) Å β = 90.77(1)° | 282.03(6) Å3 | 0.0308 | 56.94 |
Mg2P2O7, P21/c | a = 6.735(6) Å b = 8.387(7) Å c = 9.003(8) Å β = 113.18(7)° | 467.5(3) Å3 | 5.12 | ||
Cu, Fm−3m | a = 3.61334(3) Å | 47.18(1) Å3 | 37.94 |
Point | Potential [V vs. Li+/Li] | Phases | Lattice Parameters | Cell Volume | Rwp | Wt.% |
---|---|---|---|---|---|---|
1 | pristine | (Mg0.5Ni0.5)3(PO4)2, P21/c | a = 5.8809(2) Å b = 4.7060(3) Å c = 10.1656(5) Å β = 90.800(3)° | 281.31(3) Å3 | 0.0226 | 42.71 |
Mg2P2O7, P21/c | a = 6.720(4) Å b = 8.347(5) Å c = 9.032(5) Å β = 113.40(4)° | 464.9(2) Å3 | 3.68 | |||
Cu, Fm−3m | a = 3.61438(8) Å | 47.217(3) Å3 | 53.61 | |||
2 | 1.0 | (Mg0.5Ni0.5)3(PO4)2, P21/c | a = 5.878(2) Å b = 4.707(2) Å c = 10.157(3) Å β = 90.75(2)° | 281.0(2) Å3 | 0.0268 | 7.05 |
Sarcopside-Mg3(PO4)2, P21/c | a = 5.869(7) Å b = 4.841(6) Å c = 10.34(1) Å β = 92.2(1)° | 293.4(4) Å3 | 43.32 | |||
Cu, Fm−3m | a = 3.61800(2) Å | 47.36(1) Å3 | 48.00 | |||
Cu–Ni, Fm−3m | a = 3.6003(2) Å | 46.67(2) Å3 | 1.63 | |||
3 | 0.8 | Cu–Ni, Fm−3m | a = 3.62216(8) Å | 47.523(3) Å3 | 0.0170 | 100 |
4 | 0.01 | Li3PO4, Pnma | a = 10.52(4) Å b = 5.97(2) Å c = 4.88(1) Å | 306.(1) Å3 | 0.0313 | 14.87 |
Cu, Fm−3m | a = 3.6156(4) Å | 47.27(1) Å3 | 84.37 | |||
Cu–Ni, Fm−3m | a = 3.6293(7) Å | 47.80(3) Å3 | 0.76 | |||
5 | 2.9 | Li3PO4, Pnma | a = 10.49(3) Å b = 6.13(2) Å c = 4.93(1) Å | 318.(1) Å3 | 0.0399 | 3.18 |
Cu, Fm−3m | a = 3.6303(5) Å | 47.85(2) Å3 | 94.14 | |||
Cu–Ni, Fm−3m | a = 3.6399(5) Å | 48.22(2) Å3 | 2.68 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romio, M.; Surace, Y.; Mautner, A.; Hamid, R.; Jahn, M.; Cupid, D.M.; Abrahams, I. A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2. Batteries 2023, 9, 342. https://doi.org/10.3390/batteries9070342
Romio M, Surace Y, Mautner A, Hamid R, Jahn M, Cupid DM, Abrahams I. A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2. Batteries. 2023; 9(7):342. https://doi.org/10.3390/batteries9070342
Chicago/Turabian StyleRomio, Martina, Yuri Surace, Andreas Mautner, Raad Hamid, Marcus Jahn, Damian M. Cupid, and Isaac Abrahams. 2023. "A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2" Batteries 9, no. 7: 342. https://doi.org/10.3390/batteries9070342
APA StyleRomio, M., Surace, Y., Mautner, A., Hamid, R., Jahn, M., Cupid, D. M., & Abrahams, I. (2023). A Comparative Mechanistic Study on the Intercalation Reactions of Mg2+ and Li+ Ions into (Mg0.5Ni0.5)3(PO4)2. Batteries, 9(7), 342. https://doi.org/10.3390/batteries9070342