Journal Description
Agrochemicals
Agrochemicals
is an international, peer-reviewed, open access journal on all aspects of agrochemicals published quarterly online by MDPI.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 37.5 days after submission; acceptance to publication is undertaken in 4.3 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
- Agrochemicals is a companion journal of Agronomy.
Latest Articles
The Fungal Biorevolution: A Trifecta of Genome Mining, Synthetic Biology, and RNAi for Next-Generation Fungicides
Agrochemicals 2025, 4(4), 18; https://doi.org/10.3390/agrochemicals4040018 - 14 Oct 2025
Abstract
Modern agriculture faces a critical challenge from escalating fungicide resistance and the ecological impact of conventional agrochemicals. A paradigm shift is required, moving beyond simple product substitution toward an integrated technological platform. This review outlines such a platform, built on the synergy of
[...] Read more.
Modern agriculture faces a critical challenge from escalating fungicide resistance and the ecological impact of conventional agrochemicals. A paradigm shift is required, moving beyond simple product substitution toward an integrated technological platform. This review outlines such a platform, built on the synergy of three technologies: genome mining for rational discovery of novel antifungal compounds, synthetic biology for their scalable and cost-effective production, and RNA interference (RNAi) for highly specific pathogen control and resistance management. We argue that the integration of this trifecta—discovery, production, and targeted application—creates an adaptable pipeline for developing next-generation biofungicides. This approach transforms crop protection from a static defense to a dynamic, sustainable system capable of co-evolving with pathogens, ensuring future food security while minimizing environmental impact.
Full article
(This article belongs to the Section Fungicides and Bactericides)
►
Show Figures
Open AccessArticle
Natural Herbicide Shows Cytotoxicity, Neurotoxicity, and Antioxidant System Alterations on SH-SY5Y and HaCaT Cell Lines
by
Leticia Nominato-Oliveira, Juliana Ferreira da Silva, Shayane da Silva Milhorini, Larissa Lechinovski, Ana Carolina de Deus Bueno Krawczyk and Izonete Cristina Guiloski
Agrochemicals 2025, 4(3), 17; https://doi.org/10.3390/agrochemicals4030017 - 18 Sep 2025
Abstract
Weeds have acquired resistance to commonly used herbicides, and to replace them, new products, including those of natural origin, have been produced. This study evaluated the neurotoxicity, cytotoxicity, and changes in the antioxidant system caused by Natural Herbicide (NH) in SH-SY5Y neuroblastoma cells
[...] Read more.
Weeds have acquired resistance to commonly used herbicides, and to replace them, new products, including those of natural origin, have been produced. This study evaluated the neurotoxicity, cytotoxicity, and changes in the antioxidant system caused by Natural Herbicide (NH) in SH-SY5Y neuroblastoma cells and HaCaT dermal cells. SH-SY5Y and HaCaT cells were exposed to three concentrations of NH (NH1: 0.6; NH2: 1.56; and NH3: 3.12 µL/mL) for 24 and 72 h. In the SH-SY5Y cell line, the highest concentration of NH (NH3) caused cytotoxicity at both 24 and 72 h. At 24 h, the NH3 group increased the SOD. In the NH2 and NH3 groups, there was also an increase in AChE activity after 24 h of exposure. The NH1 group led to an increase in GSH after 72 h of exposure. As for the HaCaT strain, there was cytotoxicity and an increase in SOD and GSH at all NH concentrations and for both periods analyzed (24 h and 72 h). GST was reduced after exposure to NH2 and NH3. Thus, NH showed cytotoxicity in neural and dermal cells (SH-SY5Y and HaCaT, respectively). These results show that NH altered cellular homeostasis, and the evaluation of other toxicity mechanisms is important to clarify its safety.
Full article
(This article belongs to the Section Herbicides)
►▼
Show Figures

Figure 1
Open AccessArticle
Metabolomics-Driven Investigation of Harpin αβ and Laminarin Effects on Cannabis sativa L. Employing GC/EI/MS and 1H NMR Metabolomics
by
Christos N. Kerezoudis, Maria Zervou, Manolis Matzapetakis, Dimitrios Bilalis and Konstantinos A. Aliferis
Agrochemicals 2025, 4(3), 16; https://doi.org/10.3390/agrochemicals4030016 - 13 Sep 2025
Abstract
Hemp (Cannabis sativa L.) is a polymorphic species that synthesizes an array of bioactive metabolites, with cannabinoids and terpenoids constituting the major chemical classes. Until recently, the lack of legislative framework led to limited research on hemp’s plant protection and nutrition. Biostimulants
[...] Read more.
Hemp (Cannabis sativa L.) is a polymorphic species that synthesizes an array of bioactive metabolites, with cannabinoids and terpenoids constituting the major chemical classes. Until recently, the lack of legislative framework led to limited research on hemp’s plant protection and nutrition. Biostimulants have recently attracted scientific attention as sustainable alternatives to plant protection products (PPPs). Herein, we investigated the effects of biostimulant harpin (αβ) proteins and the PPP polysaccharide laminarin on hemp (cv. Futura 75), employing GC/EI/MS and 1H NMR metabolomics. Analyses demonstrated that treatments induced distinct shifts in the metabolism of the plants, thus, enabling the discovery of metabolite-biomarkers of physiological adaptation, defense mechanisms (α-linolenic acid), and bioactivity (cannabinoids). Harpin and laminarin altered the concentration of bioactive compounds such as cannabidiol, essential amino acids including L-phenylalanine and GABA, salicylate, and caffeate. Pathway analysis revealed treatment-specific modulation of key metabolic networks, with harpin triggering early, yet transient activation of phenylpropanoid- and amino acid-related pathways before broad repression, whereas laminarin maintained a more balanced regulation, sustaining defense-related biosynthesis while preserving core primary metabolism. Results advance the understanding of molecular mechanisms underlying biostimulants’ action in hemp and support their potential for improving plant health and attributes of cannabis-derived products, providing insights for its sustainable cultivation.
Full article
(This article belongs to the Section Plant Growth Regulators and Other Agrochemicals)
►▼
Show Figures

Figure 1
Open AccessArticle
First Identification of P230L and H134R Mutations Conferring SDHIs Resistance in Stemphylium vesicarium Isolated from an Italian Experimental Pear Orchard
by
Katia Gazzetti, Massimiliano Menghini, Irene Maja Nanni, Alessandro Ciriani, Mirco Fabbri, Pietro Venturi and Marina Collina
Agrochemicals 2025, 4(3), 15; https://doi.org/10.3390/agrochemicals4030015 - 29 Aug 2025
Abstract
Since the late 1970s, brown spot of pear (BSP), a fungal disease caused by Stemphylium vesicarium (Wallr.) Simmons, has been one of the most important pear fungal diseases in Italy. To protect orchards from BSP, frequent fungicide application is essential throughout the period
[...] Read more.
Since the late 1970s, brown spot of pear (BSP), a fungal disease caused by Stemphylium vesicarium (Wallr.) Simmons, has been one of the most important pear fungal diseases in Italy. To protect orchards from BSP, frequent fungicide application is essential throughout the period spanning petal fall to the onset of fruit maturation. In Italy, boscalid was the first succinate dehydrogenase inhibitor (SDHIs) fungicide authorised against BSP; subsequently, penthiopyrad and fluxapyroxad were authorised against the disease. In 2016 and 2017, SDHI compounds were applied against BSP as solo products at the University of Bologna’s experimental farm, showing a reduction in efficacy. Stemphylium vesicarium strains were isolated from leaves and fruit, and sensitivity assays and molecular analyses were performed. In vitro tests confirmed resistance to SDHIs, and two specific single-nucleotide polymorphisms were discovered, SDHB P230L and SDHC H134R, both leading to amino acid substitutions in succinate dehydrogenase subunits and confirming the resistant phenotype.
Full article
(This article belongs to the Section Fungicides and Bactericides)
►▼
Show Figures

Figure 1
Open AccessArticle
Weed Control Increases the Growth and Above-Ground Biomass Production of Pinus taeda Plantations in Southern Brazil
by
Matheus Severo de Souza Kulmann, Marcos Gervasio Pereira, Rudi Witschoreck and Mauro Valdir Schumacher
Agrochemicals 2025, 4(3), 14; https://doi.org/10.3390/agrochemicals4030014 - 16 Aug 2025
Abstract
Pinus taeda plantations have been facing declining productivity in South America, especially due to competition for natural resources such as light, water, and nutrients. Competition with spontaneous vegetation in the early years is one of the main constraints on growth and biomass allocation
[...] Read more.
Pinus taeda plantations have been facing declining productivity in South America, especially due to competition for natural resources such as light, water, and nutrients. Competition with spontaneous vegetation in the early years is one of the main constraints on growth and biomass allocation in trees. However, the best method and timing for weed control and its impact on the productivity of Pinus taeda plantations are unknown. This study aims to evaluate whether weed control increases the growth and above-ground biomass production of Pinus taeda plantations in southern Brazil. This study was conducted at two sites with five-year-old Pinus taeda plantations in southern Brazil, with each being submitted to different weed control methods. This study was conducted in randomized blocks, with nine treatments: (i) NC—no weed control, i.e., weeds always present; (ii) PC—physical weed control; (iii) CC–T—chemical weed control in the total area; (iv) CC–R—chemical weed control in rows (1.2 m wide); (v) C6m, (vi) C12m, (vii) C18m, and (viii) C24m—weed control up to 6, 12, 18, and 24 months after planting; and (ix) COC—company operational weed control. The following parameters were evaluated: the floristic composition and weed biomass, height, diameter, stem volume, needle biomass, branches, bark, and stemwood of Pinus taeda. Control of the weed competition, especially by physical means (PC), and chemical control over the entire area (CC–T) promoted significant gains in the growth and above–ground biomass production of Pinus taeda at five years of age, particularly at the Caçador site. The results reinforce the importance of using appropriate strategies for managing weed control to maximize productivity, especially before canopy closure. In addition, the strong correlation between growth variables and the total biomass and stemwood indicates the possibility of obtaining indirect estimates through dendrometric measurements. The results contribute to the improvement of silvicultural management in subtropical regions of southern Brazil.
Full article
(This article belongs to the Section Herbicides)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Pre- and Postharvest Chitosan and Calcium Applications on the Yield and Major Biochemical Qualities of Tomato (Lycopersicon esculentum Mill.)
by
Md. Zakir Hossen, S. M. Mashiur Rahman Nayeem, Quazi Forhad Quadir, Shaila Sharmin, Phalguni Das, Tasnuva Jahan Moury, Laila Arafat Sathi, Ronzon Chandra Das and Md. Harun Or Rashid
Agrochemicals 2025, 4(3), 13; https://doi.org/10.3390/agrochemicals4030013 - 11 Aug 2025
Abstract
Chitosan is an eco-friendly polysaccharide, enhancing growth and managing disease infections in fruits and vegetables. This study examines the effects of preharvest application of chitosan and calcium (Ca) on yield and postharvest chitosan coating on tomato storage. There were nine preharvest treatments, viz.,
[...] Read more.
Chitosan is an eco-friendly polysaccharide, enhancing growth and managing disease infections in fruits and vegetables. This study examines the effects of preharvest application of chitosan and calcium (Ca) on yield and postharvest chitosan coating on tomato storage. There were nine preharvest treatments, viz., T0 = control, T1 = 50 ppm chitosan, T2 = 80 ppm chitosan, T3 = 0.50% Ca, T4 = 1.0% Ca, T5 = T1 and T3 (combined), T6 = T2 and T3 (combined), T7 = T1 and T4 (combined), and T8 = T2 and T4 (combined), and three postharvest treatments, viz., C0 = control, C1 = 0.10% chitosan, and C2 = 0.20% chitosan, to examine the yield parameters and major physical and biochemical qualities of tomatoes on different days after postharvest storage (DAPS). The results revealed that chitosan and Ca treatments had a significant influence on yield while showing an insignificant impact on the biochemical qualities of fresh-harvested tomatoes. Postharvest application of chitosan coatings effectively reduced weight loss and shrinkage (34–37%) compared to the control. At 20 DAPS, only the 0.20% solution met the marketable threshold of ≥5.0, while the control failed in 100% of the samples. As storage duration increased, titratable acid and vitamin C decreased, while lycopene and sugar content rose in tomatoes. This research indicates that foliar spraying with 80 ppm chitosan during fruit initiation significantly boosts tomato yield, and a 0.20% chitosan coating on postharvest tomatoes enhances longevity and preserves biochemical quality.
Full article
(This article belongs to the Section Plant Growth Regulators and Other Agrochemicals)
►▼
Show Figures

Figure 1
Open AccessArticle
Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate
by
Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Astrid Jacobson, Joan E. McLean, Anne J. Anderson and David W. Britt
Agrochemicals 2025, 4(3), 12; https://doi.org/10.3390/agrochemicals4030012 - 23 Jul 2025
Abstract
►▼
Show Figures
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for
[...] Read more.
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for direct biological activity in wheat. F68 binds to and inserts into lipid membranes, which may benefit crops under abiotic stress. F68’s interactions with Triticum aestivum (var Juniper) seedlings and a seed-borne Bacillus spp. endophyte are presented. At concentrations below 10 g/L, F68-primed wheat seeds exhibited unchanged emergence. Root-applied fluorescein-F68 (fF68) was internalized in root epidermal cells and concentrated in highly mobile endosomes. The potential benefit of F68 in droughted wheat was examined and contrasted with wheat treated with the osmolyte, glycine betaine (GB). Photosystem II activity of droughted plants dropped significantly below non-droughted controls, and no clear benefit of F68 (or GB) during drought or rehydration was observed. However, F68-treated wheat exhibited increased transpiration values (for watered plants only) and enhanced shoot dry mass (for watered and droughted plants), not observed for GB-treated or untreated plants. The release of seed-borne bacterial endophytes into the spermosphere of germinating seeds was not affected by F68 (for F68-primed seeds as well as F68 applied to roots), and the planktonic growth of a purified Bacillus spp. seed endophyte was not reduced by F68 applied below the critical micelle concentration. These studies demonstrated that F68 entered wheat root cells, concentrated in endosomes involved in transport, significantly promoted shoot growth, and showed no adverse effects to plant-associated bacteria.
Full article

Figure 1
Open AccessArticle
Essential Oils as Active Ingredients in a Plant-Based Fungicide: An In Vitro Study Demonstrating Growth Inhibition of Gray Mold (Botrytis cinerea)
by
Tyler M. Wilson, Alma Laney, Zabrina Ruggles and Richard E. Carlson
Agrochemicals 2025, 4(3), 11; https://doi.org/10.3390/agrochemicals4030011 - 15 Jul 2025
Cited by 1
Abstract
►▼
Show Figures
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional
[...] Read more.
The conventional agricultural industry largely relies on pesticides to maintain healthy and viable crops. Application of fungicides, both pre- and post-harvest of crops, is the go-to method for avoiding and eliminating Botrytis cinerea, the fungal pathogen responsible for gray mold. However, conventional fungicides and their residues have purported negative environmental and health impacts. Natural products, such as essential oils, are viewed as a promising alternative to conventional fungicides. The current research is an in vitro study on the antifungal activity of a natural water-based fungicide (N.F.), which uses a blend of essential oils (ajowan, cassia, clove, eucalyptus, lemongrass, oregano) as the active ingredients against B. cinerea. Compared to conventional fungicides tested at the same concentration (50 μL/mL), those with active ingredients of myclobutanil or propiconazole; the N.F. demonstrated significant (F(3,16) = 54, p = <0.001) and complete fungal growth inhibition. While previous research has largely focused on the antifungal properties of single essential oils and/or isolated compounds from essential oils, this research focuses on the efficacy of using a blend of essential oils in a proprietary delivery system. This research is of importance to the fields of agronomy, ecology, and health sciences.
Full article

Figure 1
Open AccessArticle
Optimizing Nitrogen Use Efficiency and Reducing Nutrient Losses in Maize Using Controlled-Release Coated Fertilizers
by
Jong-Hyeong Lee and Hyun-Hwoi Ku
Agrochemicals 2025, 4(3), 10; https://doi.org/10.3390/agrochemicals4030010 - 30 Jun 2025
Cited by 1
Abstract
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining
[...] Read more.
This study aimed to evaluate the agronomic performance and environmental impact of controlled-release coated fertilizers (CRCFs) in upland maize systems. Specifically, we sought to determine the optimal nitrogen (N) application rate that maximizes nitrogen use efficiency (NUE) and minimizes nutrient runoff, while maintaining yield comparable to conventional fertilization practices. A two-year field experiment (2017–2018) was conducted to assess CRCF formulations composed of urea, MAP, and potassium sulfate encapsulated in LDPE/EVA coatings with talc, humic acid, and starch additives. Treatments included various nitrogen application rates (33–90 kg N ha−1) using CRCF and a conventional NPK fertilizer (150 kg N ha−1). Measurements included fresh ear yield, aboveground biomass, NUE, and concentrations of total N (TN), nitrate N (NO3−–N), and total P (TP) in surface runoff. Statistical analyses were performed using linear and quadratic regression models to determine yield responses and agronomic optimal N rate. CRCF treatments produced yields comparable to or exceeding those of conventional fertilization while using less than half the recommended N input. The modeled agronomic optimum N rate was 88.4 kg N ha−1, which closely matched the maximum observed yield. CRCF application significantly reduced TN, NO3−–N, and TP runoff in 2017 and improved NUE up to 71.2%. Subsurface placement and sigmoidal nutrient release contributed to reduced nutrient losses. CRCFs can maintain maize yield while reducing N input by approximately 40%, aligning with climate-smart agriculture principles. This strategy enhances NUE, reduces environmental risks, and offers economic benefits by enabling single basal application. Further multi-site studies are recommended to validate these findings under diverse agroecological conditions.
Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
►▼
Show Figures

Figure 1
Open AccessArticle
Do Foliar Fertilizers Promote Increased Productivity of Tropical Grasses?
by
Anna B. O. Moura, Gustavo B. A. Silva, Anna C. C. Paimel, Eildson S. O. Silva, Lucas G. Mota, Camila F. D. Duarte, Carla H. A. Cabral and Carlos E. A. Cabral
Agrochemicals 2025, 4(2), 9; https://doi.org/10.3390/agrochemicals4020009 - 11 Jun 2025
Abstract
►▼
Show Figures
Foliar fertilizers are low-cost agrochemicals used in pastures, and further research is needed regarding their impact on tropical grasses. Therefore, the objective of this research was to evaluate the effects of foliar fertilization on the development of tropical grasses. Two experiments, consisting of
[...] Read more.
Foliar fertilizers are low-cost agrochemicals used in pastures, and further research is needed regarding their impact on tropical grasses. Therefore, the objective of this research was to evaluate the effects of foliar fertilization on the development of tropical grasses. Two experiments, consisting of five treatments and four replicates, were carried out. Each experiment was carried out using the following grasses: Zuri grass (Megathyrsus maximus Jacq. cv. Zuri) and ipypora grass (hybrid of Urochloa brizantha × Urochloa zizizensis). In each experiment, ten treatments were evaluated using a 2 × 5 factorial design with four replications. Treatments combined two soil fertilization strategies (with and without nitrogen) and five foliar fertilization strategies, which consisted of a control treatment without foliar fertilization and four application times: immediately after defoliation (0 leaves) and with 1, 2, and 3 expanded leaves. The grass height, tiller population density (TPD), leaf number (LN), forage dry mass (FDM), individual leaf mass (ILM) were evaluated. In the absence of soil fertilization, foliar fertilizer application had no effect on the development of the grasses (p > 0.05). Foliar fertilization did not affect the FDM of Ipyporã and Zuri grass under any of the conditions evaluated (p > 0.05). When applied in the soil fertilize with nitrogen, foliar fertilizer increased LN by 24% for two grasses (p < 0.05). For Zuri grass, foliar fertilization reduced individual leaf mass by 19% (p < 0.05). Thus, foliar fertilizer does not increase the productivity of tropical grasses, with small effects on the leaf’s appearance in Ipyporã and Zuri grass, without altering the forage mass, which necessitates new studies with agrochemicals, new doses, and concentrations of nitrogen.
Full article

Figure 1
Open AccessArticle
Investigating Black Soldier Fly Larval (Hermetia illucens) Frass Applications as a Partial Peat Replacement and Liquid Fertilizer in Brassicaceae Crop Production
by
Maria Y. Chavez, Armando Villa Ignacio, Joshua K. Craver and Jennifer Bousselot
Agrochemicals 2025, 4(2), 8; https://doi.org/10.3390/agrochemicals4020008 - 29 May 2025
Abstract
Insect frass is the left-over side stream from mass rearing insects as food and feed. Research indicates that black soldier fly, Hermetia illucens, larvae (BSFL) frass can improve the yield of leafy greens while also increasing nutrient uptake. Two studies evaluated the
[...] Read more.
Insect frass is the left-over side stream from mass rearing insects as food and feed. Research indicates that black soldier fly, Hermetia illucens, larvae (BSFL) frass can improve the yield of leafy greens while also increasing nutrient uptake. Two studies evaluated the impact of BSFL frass on two Brassicaceae crops: kale (Brassica oleracea) and mustard (Sinapis alba). In Study 1, greenhouse potting mixes comprised of 10% BSFL frass produced kale and mustard fresh and dry weights, relative chlorophyll concentrations, and nitrogen concentration in plant tissues that were comparable to a 100% peat mix control. In mustard tissue, phosphorus and potassium concentrations were higher in the BSFL 10% treatment compared to the control. This provides further motive for incorporating frass into peat-based substrates to reduce peat consumption and extraction. In Study 2, Liquid BSFL frass tea was applied to kale in an outdoor container study. The frass tea only treatment produced the worst outcomes for yield. However, a mixture of frass tea and traditional fertilizer resulted in comparable yield to a control provided the same volume in solely fertilizer. With further research, frass tea could be supplemented to reduce conventional fertilizers.
Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
►▼
Show Figures

Figure 1
Open AccessArticle
Economic Assessment of Herbicide Use in Rice Under Different Establishment Methods in Northwest India
by
Navjot Singh Brar, Parminder Singh Sandhu, Anil Kumar, Prabjeet Singh and Simerjeet Kaur
Agrochemicals 2025, 4(2), 7; https://doi.org/10.3390/agrochemicals4020007 - 20 May 2025
Abstract
►▼
Show Figures
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of
[...] Read more.
Large weed infestation is a major problem in dry direct-seeded rice (DSR). Chemical weed control serves as a crucial component for integrated weed management in DSR. Over the last decade, herbicide use has increased from 42 to 55%, and the worldwide contamination of water resources and food by herbicides is a major health issue. In the present study, the use of herbicides in three different establishment methods of rice was examined with the objective to present and discuss the herbicide use pattern and cost of weed control. For this, a field-wide survey was conducted over an area of 165.4 ha in eight villages of the Tarn Taran District of Punjab, India. For two DSR methods, during the initial stage of crop growth, the weed infestation was reported to be less in moist fields sown with direct seeding (soil moisture in the field capacity stage) after pre-sowing irrigation (DSR-PSI). The herbicide use and cost of weed control under DSR-PSI conditions were similar to that of puddled transplanted rice, but were significantly lower than that of direct seeding in dry fields (rice seeds are sown in dry fields, and irrigation is applied immediately after sowing), i.e., DSR-IAS. Therefore, the DSR-PSI method of rice establishment can ensure minimum dependence on herbicides, as well as other benefits of direct seeding. Thus, there is a need to promote the DSR-PSI method over the DSR-IAS method among farmers in order to reduce herbicide use in DSR and ensure environmental safety.
Full article

Figure 1
Open AccessArticle
Guinea Pig Manure and Mineral Fertilizers Enhance the Yield and Nutritional Quality of Hard Yellow Maize on the Peruvian Coast
by
Emilee Calero-Rios, Miryam Borbor-Ponce, Sphyros Lastra and Richard Solórzano
Agrochemicals 2025, 4(2), 6; https://doi.org/10.3390/agrochemicals4020006 - 26 Apr 2025
Abstract
Sustainable fertilization using local resources such as manure is crucial for soil health. This study evaluated the potential of guinea pig manure to replace mineral fertilizers in hard yellow maize (hybrid INIA 619) under Peruvian coastal conditions. A split-plot design tested four doses
[...] Read more.
Sustainable fertilization using local resources such as manure is crucial for soil health. This study evaluated the potential of guinea pig manure to replace mineral fertilizers in hard yellow maize (hybrid INIA 619) under Peruvian coastal conditions. A split-plot design tested four doses of guinea pig manure (0, 2, 5, 10 t⋅ha−1) and four levels of mineral fertilization (0%, 50%, 75%, 100%). The study assessed plant height, ear characteristics, yield, and nutritional quality parameters. The results indicated that 100% mineral fertilization led to the highest plant height (229.67 cm) and grain weight (141.8 g). Yields of 9.19 and 9.08 t⋅ha−1 were achieved with 5 and 10 t⋅ha−1 of manure, while 50% mineral fertilization gave 8.8 t⋅ha−1, similar to the full dose (8.7 t⋅ha−1). The protein content was highest with 10 t⋅ha−1 of manure combined with mineral fertilization. However, no significant differences were found between the 50%, 75%, and 100% mineral fertilizer doses. In conclusion, applying guinea pig manure improved nutrient use efficiency, yield, and grain protein quality in maize, reducing the need for mineral fertilizers by up to 50%. This provides a sustainable fertilization strategy for agricultural systems.
Full article
(This article belongs to the Topic Soil Health and Nutrient Management for Crop Productivity)
►▼
Show Figures

Figure 1
Open AccessCorrection
Correction: Huang et al. Toxicity Assessment of 36 Herbicides to Green Algae: Effects of Mode of Action and Chemical Family. Agrochemicals 2024, 3, 164–180
by
Jian Huang, Xiuying Piao, Yanming Zhou and Simeng Li
Agrochemicals 2025, 4(2), 5; https://doi.org/10.3390/agrochemicals4020005 - 24 Mar 2025
Abstract
Jian Huang, Xiuying Piao, and Yanming Zhou were not included as authors in the original publication [...]
Full article
Open AccessReview
Effective Strategies for Managing Wheat Diseases: Mapping Academic Literature Utilizing VOSviewer and Insights from Our 15 Years of Research
by
Ioannis Vagelas
Agrochemicals 2025, 4(1), 4; https://doi.org/10.3390/agrochemicals4010004 - 4 Mar 2025
Cited by 1
Abstract
►▼
Show Figures
Wheat pathogens pose a significant risk to global wheat production, with climate change further complicating disease dynamics. Effective management requires a combination of genetic resistance, cultural practices, and careful use of chemical controls. Ongoing research and adaptation to changing environmental conditions are crucial
[...] Read more.
Wheat pathogens pose a significant risk to global wheat production, with climate change further complicating disease dynamics. Effective management requires a combination of genetic resistance, cultural practices, and careful use of chemical controls. Ongoing research and adaptation to changing environmental conditions are crucial for sustaining wheat yields and food security. Based on selective academic literature retrieved from the Scopus database and analyzed by a bibliographic software such as the VOSviewer we discussed and focused on various aspects of current and future strategies for managing major wheat pathogens and diseases such as Tan spot, Septoria tritici blotch, Fusarium head blight, etc. Chemical management methods, such as the use of fungicides, can be effective but are not always preferred. Instead, agronomic practices like crop rotation and tillage play a significant role in managing wheat diseases by reducing both the incidence and severity of these diseases. Moreover, adopting resistance strategies is essential for effective disease management.
Full article

Figure 1
Open AccessArticle
Pesticides and Eroding Food Citizenship: Understanding Individuals’ Perspectives on the Greek Food System
by
Konstantinos B. Simoglou, Paraskevi El. Skarpa and Emmanouil Roditakis
Agrochemicals 2025, 4(1), 3; https://doi.org/10.3390/agrochemicals4010003 - 4 Mar 2025
Abstract
This study explores consumer perceptions of the Greek food system, focusing on safety concerns related to pesticide residues. Utilizing a qualitative research design, thematic analysis was conducted on data collected from 1024 participants through an online survey platform between May and November 2024.
[...] Read more.
This study explores consumer perceptions of the Greek food system, focusing on safety concerns related to pesticide residues. Utilizing a qualitative research design, thematic analysis was conducted on data collected from 1024 participants through an online survey platform between May and November 2024. Participants, representing diverse demographics across Greece, provided insights into their experiences and concerns regarding food safety. The analysis revealed significant themes, including a crisis of confidence in governance, demands for transparency, and skepticism towards food system actors. Participants expressed disillusionment with the state’s role in ensuring food safety and highlighted the need for a governance framework that aligns with community values. The findings underscore the importance of empowering consumers with accurate information to foster informed decision-making and rebuild trust in the food system. Ultimately, this study emphasizes the necessity for a transformative approach to food governance that incorporates diverse voices and perspectives, aiming to create a more equitable and sustainable food system in Greece. These insights contribute to the broader discourse on food citizenship and the collective responsibilities of all stakeholders in ensuring food safety and integrity.
Full article
(This article belongs to the Section Pesticides)
►▼
Show Figures

Figure 1
Open AccessArticle
A Different Way to Sow: Seed Enhancements Involving Gelatin Encapsulation with Controlled-Released Fertilizers Improve Seedling Growth in Tomato (Solanum lycopersicum L.)
by
Brant W. Touchette, Daniel S. Cox, Rebecca L. Carranza and Harriette Palms
Agrochemicals 2025, 4(1), 2; https://doi.org/10.3390/agrochemicals4010002 - 20 Feb 2025
Abstract
Seed enhancements involve post-harvest modifications that improve germination and plant performance. One form of enhancement involves coatings, which encompasses encrusting, pelleting, and film coats. These coatings may contain agrichemicals, such as fungicides and insecticides, and can foster conformational changes that improve the plantability
[...] Read more.
Seed enhancements involve post-harvest modifications that improve germination and plant performance. One form of enhancement involves coatings, which encompasses encrusting, pelleting, and film coats. These coatings may contain agrichemicals, such as fungicides and insecticides, and can foster conformational changes that improve the plantability of small or irregularly shaped seeds. Seed encapsulation using pharmaceutical capsules can be viewed as an extension of seed coatings where seeds and other beneficial agrichemicals can be combined into a single plantable unit. For many crops, direct contact with high levels of conventional fertilizers may induce some level of phytotoxicity, and early studies involving fertilizer-enriched seed coatings resulted in decreased seedling emergence and diminished plant performance. Encapsulation, however, provides greater delivery volumes compared to other coatings and may offer some degree of separation between seeds and potentially phytotoxic agrochemicals. This study considered tomato seed encapsulation with controlled-release fertilizers. In general, seed exposure to gelatin-based capsules delayed germination by 2- to 3- days. Nevertheless, seed encapsulation improved plant performance including increased plant height and dry mass production by as much as 75 and 460%, respectively. These growth responses mitigated any effects attributed to germination delays. Moreover, higher levels of controlled-release fertilizers (≥800 mg) fostered earlier flower induction by up to 3 weeks. Collectively, the results suggest that seed encapsulation can be an effective way to deliver fertilizers to plants in a manner that could reduce overall fertilizer application rates and possibly lessen the quantity of plant nutrient input necessary for tomato cultivation.
Full article
(This article belongs to the Section Fertilizers and Soil Improvement Agents)
►▼
Show Figures

Figure 1
Open AccessEditorial
Frass and Furious: Unfolding the Potential of Insect Frass as Soil Fertilizer
by
Christos G. Athanassiou and Christos I. Rumbos
Agrochemicals 2025, 4(1), 1; https://doi.org/10.3390/agrochemicals4010001 - 28 Jan 2025
Cited by 2
Abstract
►▼
Show Figures
Over the past decade, insect farming has garnered significant scientific and commercial attention due to its potential as a sustainable and efficient alternative nutrient source for both animal feed [...]
Full article

Figure 1
Open AccessArticle
The Ecotoxicity of Pesticides Used in Conventional Apple and Grapevine Production in Austria Is Much Higher for Honeybees, Birds and Earthworms than Nature-Based Substances Used in Organic Production
by
Lena Goritschnig, Thomas Durstberger, Helmut Burtscher-Schaden and Johann G. Zaller
Agrochemicals 2024, 3(4), 232-252; https://doi.org/10.3390/agrochemicals3040016 - 23 Oct 2024
Abstract
►▼
Show Figures
It is debated whether the ecotoxicity of active substances (ASs) contained in synthetic pesticides applied in conventional agriculture (conASs) differs from nature-based ASs used in organic agriculture (orgASs). Using the official pesticide use statistics, we evaluated the ecotoxicity of ASs used in apple
[...] Read more.
It is debated whether the ecotoxicity of active substances (ASs) contained in synthetic pesticides applied in conventional agriculture (conASs) differs from nature-based ASs used in organic agriculture (orgASs). Using the official pesticide use statistics, we evaluated the ecotoxicity of ASs used in apple and grapevine production in Austria. In 2022, 49 conASs and 21 orgASs were authorized for apple production and 60 conASs and 23 orgASs were authorized for grapevine production in Austria. Based on the latest publicly available data on the actual use of pesticides in apple and grapevine production (from the year 2017), we evaluated their ecotoxicity based on information in the freely accessible Pesticide Properties and Bio-Pesticides Databases. The results showed that although the amount of ASs applied per hectare of field was higher in organic farming, the intrinsic toxicities of ASs used in conventional farming were much higher. The number of lethal toxic doses (LD50) of ASs applied in conventional apple orchards was 645%, 15%, and 6011% higher for honeybees, birds, and earthworms, respectively, than in organic apple production. In conventional vineyards, lethal doses for honeybees, birds, and earthworms were 300%, 129%, and 299% higher than in organic vineyards. We conclude that promoting organic farming would therefore contribute to the better protection of biodiversity on agricultural land and beyond.
Full article

Figure 1
Open AccessArticle
Exploring Chemical and Cultural Weed Management for Industrial Hemp Production in Georgia, USA
by
Hannah E. Wright-Smith, Timothy W. Coolong, A. Stanley Culpepper, Taylor M. Randell-Singleton and Jenna C. Vance
Agrochemicals 2024, 3(3), 219-231; https://doi.org/10.3390/agrochemicals3030015 - 7 Aug 2024
Cited by 1
Abstract
Industrial hemp (Cannabis sativa) production is complex, with strict regulatory constraints and challenges associated with a lack of labeled pesticides due to its status as a novel crop in the US. Four experiments were conducted in 2020 and 2021 to establish
[...] Read more.
Industrial hemp (Cannabis sativa) production is complex, with strict regulatory constraints and challenges associated with a lack of labeled pesticides due to its status as a novel crop in the US. Four experiments were conducted in 2020 and 2021 to establish herbicide tolerances for hemp production in the coastal plain of Georgia, USA. Objectives included evaluating hemp response to pretransplant or posttransplant herbicides, determining if planting method influenced herbicide injury from residual preplant applied herbicides, and understanding how plastic mulch may influence hemp flower yields. When applied one day prior to transplanting, maximum hemp crop visual injury was less than 12% compared to the untreated control, with acetochlor, flumioxazin, fomesafen, pendimethalin, and norflurazon while dithiopyr, halosulfuron, isoxaben, and isoxaflutole resulted in greater than 50% injury. Posttransplant applications of S-metolachlor, acetochlor, pendimethalin, and clethodim resulted in less than 15% injury while halosulfuron, metribuzin, trifloxysulfuron, imazethapyr, and prometryn applications resulted in greater than 50% injury to plants. Preplant and posttransplant applied herbicides were found to have little effect on total tetrahydrocannabinol (THC), cannabidiol (CBD), or total cannabinoids in the dry flower after harvest. In a separate experiment, injury from halosulfuron and metribuzin was 52% to 56% less when planted with a mechanical transplanter as compared to the practice of using a transplant wheel to depress a hole in the soil followed by hand transplanting. In the final experiment, hemp dry flower yield in a non-plastic mulched (bareground) system was similar to that in a plastic mulched system. However, early season plant above-ground biomass was less in the plastic mulched system, which may have been due to elevated soil temperatures inhibiting early season growth.
Full article
(This article belongs to the Special Issue Feature Papers on Agrochemicals)
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Agriculture, Agronomy, Analytica, Horticulturae, IJPB, Plants, Earth, Agrochemicals
Biostimulants in Agriculture—2nd Edition
Topic Editors: Manuel Ângelo Rosa Rodrigues, Paolo Carletti, Domenico RongaDeadline: 30 October 2025
Topic in
Agriculture, Agronomy, Crops, Insects, Sustainability, Agrochemicals
Advances in Integrated Pest Management: New Tools and Tactics for Pest Control
Topic Editors: Christos I. Rumbos, Eirini KaranastasiDeadline: 31 December 2025
Topic in
Agriculture, Agronomy, Crops, Horticulturae, Microorganisms, Plants, Agrochemicals
Applications of Biotechnology in Food and Agriculture
Topic Editors: Edgar Omar Rueda-Puente, Bernardo Murillo-AmadorDeadline: 1 February 2026
Topic in
Agrochemicals, Agronomy, Insects, IJMS, Marine Drugs, Toxins, Agriculture, Biology
Research on Natural Bioactive Product-Based Pesticidal Agents—2nd Edition
Topic Editors: Min Lv, Hui XuDeadline: 28 February 2026

Conferences
Special Issues
Special Issue in
Agrochemicals
Control of Use of Pesticides and Their Impact on Consumer Health
Guest Editor: Árpád ÁmbrusDeadline: 30 November 2025
Special Issue in
Agrochemicals
Current and Next-Generation Phytochemical Agrochemicals: Synergizing AI, Omics, and Synthetic Biology for Sustainable Crop Protection
Guest Editors: Vassya Bankova, Guo-Hua ZhongDeadline: 31 December 2025