-
Simulation of Seawater Intrusion and Upconing Processes in Mediterranean Aquifer in Response to Climate Change (Plana de Castellón, Spain)
-
Extraordinary 21st Century Drought in the Po River Basin (Italy)
-
Characterizing Soil and Bedrock Water Use of Native California Vegetation
-
Assessing Groundwater Connection/Disconnection to Waterholes Along the Balonne River and in the Barwon–Darling River System in Queensland and New South Wales, Australia, for Waterhole Persistence
-
Attribution of the Climate and Land Use Change Impact on the Hydrological Processes of Athabasca River Basin, Canada
Journal Description
Hydrology
Hydrology
is an international, peer-reviewed, open access journal on hydrology published monthly online by MDPI. The American Institute of Hydrology (AIH) and Japanese Society of Physical Hydrology (JSPH) are affiliated with Hydrology and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubAg, GeoRef, and other databases.
- Journal Rank: JCR - Q2 (Water Resources) / CiteScore - Q1 (Oceanography)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.3 days after submission; acceptance to publication is undertaken in 2.9 days (median values for papers published in this journal in the second half of 2024).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.1 (2023);
5-Year Impact Factor:
3.0 (2023)
Latest Articles
Using Landsat 8/9 Thermal Bands to Detect Potential Submarine Groundwater Discharge (SGD) Sites in the Mediterranean in North West-Central Morocco
Hydrology 2025, 12(6), 144; https://doi.org/10.3390/hydrology12060144 - 10 Jun 2025
Abstract
The objective of this study is to detect the locations of submarine groundwater discharge (SGD) in the coastal area of the El Jebha region, located in northwestern Morocco. It is hypothesized that this zone is fed by one of the most rain-rich karstic
[...] Read more.
The objective of this study is to detect the locations of submarine groundwater discharge (SGD) in the coastal area of the El Jebha region, located in northwestern Morocco. It is hypothesized that this zone is fed by one of the most rain-rich karstic aquifers in Morocco (the Dorsale Calcaire). The region’s geology is complex, characterized by multiple faults and fractures. Thermal remote sensing is used in this study to locate potential SGD zones, as groundwater emerging from karst systems is typically cooler than surrounding ocean water. Landsat satellite imagery was used to assess temperature variations and detect anomalies associated with the presence of freshwater in the marine environment. El Jebha’s geographical location, with a direct interface between limestone and sea, makes it an ideal site for the appearance of submarine groundwater discharges. This study constitutes the first use of Landsat-8/9 thermal-infrared imagery, processed with a multi-temporal fuzzy-overlay method, to detect SGD. Out of 107 Landsat scenes reviewed, 16 cloud-free images were selected. The workflow identified 18 persistent cold anomalies, of which three were classified as high-probability SGD zones based on recurrence and spatial consistency. The results highlight several potential SGD zones, confirming the cost-effectiveness of thermal remote sensing in mapping thermal anomalies and opening up new perspectives for the study of SGD in Morocco, where these phenomena remain rarely documented.
Full article
(This article belongs to the Topic Karst Environment and Global Change)
►
Show Figures
Open AccessArticle
Future Dynamics of Drought in Areas at Risk: An Interpretation of RCP Projections on a Regional Scale
by
Pietro Monforte and Sebastiano Imposa
Hydrology 2025, 12(6), 143; https://doi.org/10.3390/hydrology12060143 - 9 Jun 2025
Abstract
►▼
Show Figures
The Mediterranean region is currently experiencing the effects of a climate crisis, marked by an increase in the frequency and intensity of drought events. Climate variability has led to prolonged periods of drought, even in areas not traditionally classified as arid. These events
[...] Read more.
The Mediterranean region is currently experiencing the effects of a climate crisis, marked by an increase in the frequency and intensity of drought events. Climate variability has led to prolonged periods of drought, even in areas not traditionally classified as arid. These events have significant impacts on water resources, agricultural productivity, and socioeconomic systems. This study investigates the evolution of meteorological, hydrological, and socioeconomic droughts using the Standardized Precipitation Index (SPI) at time scales of 3, 12, and 24 months in a Mediterranean region identified as particularly vulnerable to climate change. Observational data from local meteorological stations were used for the 1991–2020 baseline period. Future climate projections were derived from the MPI-ESM model under the RCP 4.5 and RCP 8.5 scenarios, extending to the year 2080. Data were aggregated on a 0.50° × 0.50° spatial grid and bias-corrected using linear scaling. The Kolmogorov–Smirnov test was applied to assess the statistical compatibility between observed and projected precipitation data. Results indicate a substantial decline in annual precipitation, with reductions of up to 20% under the RCP 8.5 scenario for the period 2051–2080, compared to the reference period. The frequency of severe and extreme drought events is projected to increase by 30–50% in several grid meshes, especially during summer. Conversely, altered weather patterns in other areas may increase the likelihood of flood events. This study identifies the grid meshes most vulnerable to drought, highlighting the urgent need for adaptive water management strategies to ensure agricultural sustainability and reduce the socioeconomic impacts of climate-induced drought.
Full article

Figure 1
Open AccessArticle
Impact of Spatio-Temporal Variability of Droughts on Streamflow: A Remote-Sensing Approach Integrating Combined Drought Index
by
Anoma Srimali, Luminda Gunawardhana, Janaka Bamunawala, Jeewanthi Sirisena and Lalith Rajapakse
Hydrology 2025, 12(6), 142; https://doi.org/10.3390/hydrology12060142 - 7 Jun 2025
Abstract
Understanding how spatial drought variability influences streamflow is critical for sustainable water management under changing climate conditions. This study developed a novel Combined Drought Index (CDI) and a method to assess spatial drought impacts on different flow components by integrating remote sensing and
[...] Read more.
Understanding how spatial drought variability influences streamflow is critical for sustainable water management under changing climate conditions. This study developed a novel Combined Drought Index (CDI) and a method to assess spatial drought impacts on different flow components by integrating remote sensing and hydrological modelling frameworks with generic applicability. The CDI was constructed using Principal Component Analysis to merge multiple standardized indicators: the Standardized Precipitation Evapotranspiration Index, Temperature Condition Index, Vegetation Condition Index, and Soil Moisture Condition Index. The developed framework was applied to the Giriulla sub-basin of the Maha Oya River Basin, Sri Lanka. The CDI strongly correlated with standardized streamflow with a Pearson correlation coefficient of 0.74 and successfully captured major drought and flood events between 2015 and 2023. A semi-distributed hydrological model was used to simulate streamflow variations across sub-catchments under varying drought conditions. Results show upstream sub-catchments were more sensitive to droughts, with sharper declines in specific discharge. Spatial drought variability had different impacts under high- and low-flow conditions: wetter sub-catchments contributed more during high flows, while resilience during low flows varied with catchment characteristics. This integrated approach provides a valuable framework that can be generically applicable for enhanced drought impact assessments.
Full article
(This article belongs to the Special Issue Geographic Information Systems (GIS) Techniques and Applications for Sustainable Water Resources Management in Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Dynamics of Runoff Quantity in an Urbanizing Catchment: Implications for Runoff Management Using Nature-Based Retention Wetland
by
Lihoun Teang, Kim N. Irvine, Lloyd H. C. Chua and Muhammad Usman
Hydrology 2025, 12(6), 141; https://doi.org/10.3390/hydrology12060141 - 6 Jun 2025
Abstract
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved
[...] Read more.
Rapid suburbanization can alter catchment flow regime and increase stormwater runoff, posing threats to sensitive ecosystems. Applications of Nature-based Solutions (NbS) have increasingly been adopted as part of integrated water management efforts to tackle the hydrological impact of urbanization with co-benefits for improved urban resilience, sustainability, and community well-being. However, the implementation of NbS can be hindered by gaps in performance assessment. This paper introduces a physically based dynamic modeling approach to assess the performance of a nature-based storage facility designed to capture excess runoff from an urbanizing catchment (Armstrong Creek catchment) in Geelong, Australia. The study adopts a numerical modelling approach, supported by extensive field monitoring of water levels over a 2.5-year period. The model provides a decision support tool for Geelong local government in managing stormwater runoff to protect Lake Connewarre, a Ramsar-listed wetland under the Port Phillip Bay (Western Shoreline) and Bellarine Peninsula. Runoff is currently managed via a set of operating rules governing gate operations that prevents flows into the ecological sensitive downstream waterbody from December to April (drier periods in summer and most of autumn). Comparison with observed water level data at three monitoring stations for a continuous simulation period of May 2022 to October 2024 demonstrates satisfactory to excellent model performance (NSE: 0.55–0.79, R2: 0.80–0.89, ISE rating: excellent). Between 1670 × 103 m3 and 2770 × 103 m3 of runoff was intercepted by the nature-based storage facility, representing a 56–70% reduction in stormwater discharge into Lake Connewarre. Our model development underscores the importance of understanding and incorporating user interventions (gate operations and emergency pumping) from the standard operation plan to better manage catchment runoff. As revealed by the seasonal flow analysis for consecutive years, adaptive runoff management practices, capable of responding to rainfall variability, should be incorporated.
Full article
(This article belongs to the Special Issue Advances in Nature-Based Solutions for Hydrometeorological Risk Reduction)
►▼
Show Figures

Figure 1
Open AccessArticle
Application of the Groundwater Data Mapper Tool to Assess Storage Changes in a Groundwater-Driven Basin in the Klamath Watershed, Oregon, USA
by
Daniel Shepard, Norman L. Jones and Gustavious P. Williams
Hydrology 2025, 12(6), 140; https://doi.org/10.3390/hydrology12060140 - 6 Jun 2025
Abstract
Streamflow in the Upper Williamson Basin of the Klamath Watershed is groundwater dominated with year-to-year fluctuations in both volume and duration, including multi-year periods with no streamflow. The relationship between precipitation, groundwater, and streamflow is difficult to characterize because of the limited number
[...] Read more.
Streamflow in the Upper Williamson Basin of the Klamath Watershed is groundwater dominated with year-to-year fluctuations in both volume and duration, including multi-year periods with no streamflow. The relationship between precipitation, groundwater, and streamflow is difficult to characterize because of the limited number of monitoring wells, large data gaps, and a unique geologic structure that controls flow. To understand why surface flow has ceased entirely, we use the Groundwater Data Mapper Tool to impute gaps in the well data using machine learning and open-source Earth observation data and then compute changes in groundwater storage over time. Our research confirms that groundwater storage is correlated to streamflow and finds that there is a control groundwater storage below which flow does not occur. Furthermore, we find that groundwater storage is correlated to rainfall with a three- to four-year delay. This lag and the geologic structural control mean that even with several years of above-average precipitation, live flow may take years to resume. This insight allows water managers to understand and adjust for this highly irregular streamflow for better management decisions.
Full article
(This article belongs to the Special Issue Hydrological Modelling for the Sustainable Management of Water Resources in River Basins)
►▼
Show Figures

Figure 1
Open AccessArticle
Calibration and Validation of an Operational Method to Estimate Actual Evapotranspiration in Mediterranean Wetlands
by
Luca Fibbi, Nicola Arriga, Marta Chiesi, Alessandro Dell’Acqua, Maurizio Pieri and Fabio Maselli
Hydrology 2025, 12(6), 139; https://doi.org/10.3390/hydrology12060139 - 5 Jun 2025
Abstract
A semi-empirical method for estimating actual evapotranspiration (ETa) based on ancillary and NDVI data, named NDVI-Cws, is currently being refined for improved applicability to wetlands. The investigation, in particular, addresses the case of semi-natural ecosystems where the impact of meteorological water stress (WS)
[...] Read more.
A semi-empirical method for estimating actual evapotranspiration (ETa) based on ancillary and NDVI data, named NDVI-Cws, is currently being refined for improved applicability to wetlands. The investigation, in particular, addresses the case of semi-natural ecosystems where the impact of meteorological water stress (WS) is limited by groundwater resources. To adapt to this situation, the application of the NDVI-Cws method is preceded by a calibration phase based on spatially enhanced Land Surface Analysis Satellite Application Facility (LSA SAF) evapotranspiration products. This calibration is currently performed in the main wetlands of Tuscany (Central Italy) identified in the Ramsar Convention. The calibrated NDVI-Cws version is then applied to all regional Ramsar areas, yielding outputs that are first examined all over Tuscany. Next, the model estimates are quantitatively assessed versus ETa observations taken in a forest and a grassland Ramsar site. The results of these independent tests show the improvement achieved by the calibration phase with respect to the original model version. This supports the potential of the refined NDVI-Cws method to yield reasonably accurate daily ETa estimates for wetlands at a spatial resolution that is mainly dependent on the NDVI data used.
Full article
(This article belongs to the Special Issue GIS Modelling of Evapotranspiration with Remote Sensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Precipitation Uncertainty on Flood Hazard Assessment in the Oueme River Basin
by
Dognon Jules Afféwé, Fabian Merk, Marleine Bodjrènou, Manuel Rauch, Muhammad Nabeel Usman, Jean Hounkpè, Jan-Geert Bliefernicht, Aristide B. Akpo, Markus Disse and Julien Adounkpè
Hydrology 2025, 12(6), 138; https://doi.org/10.3390/hydrology12060138 - 4 Jun 2025
Abstract
►▼
Show Figures
This study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994
[...] Read more.
This study evaluates the impact of precipitation ensembles on flood hazards in the Ouémé River Basin by coupling the hydrological HBV and hydrodynamic HEC–RAS model. Both models were calibrated and validated to simulate hydrological and hydraulic processes. Meteorological and hydrometric data from 1994 to 2016, along with flood maps and DEM are used. Evapotranspiration data are calculated using Hargreaves–Samani formula. The coupling HBV–HEC–RAS models enabled the generation of ensemble hydrographs, flood maps, flood probability maps and additional statistics in West Africa for the first time, offering a comprehensive understanding of flood dynamics under uncertainty. Ensemble hydrographs and maps obtained enhance decision-making by showing discharge scenarios, spatial flood variability, prediction reliability, and probabilities, supporting targeted flood management and resource planning under uncertainty. The findings underline the need for a comprehensive strategy to mitigate both common and rare flood events while accounting for spatial uncertainties inherent in hydrological and hydraulic modeling.
Full article

Figure 1
Open AccessArticle
An Application of the Ecosystem Services Assessment Approach to the Provision of Groundwater for Human Supply and Aquifer Management Support
by
Malgorzata Borowiecka, Mar Alcaraz and Marisol Manzano
Hydrology 2025, 12(6), 137; https://doi.org/10.3390/hydrology12060137 - 3 Jun 2025
Abstract
Increasing pressures on groundwater in the last decades have led to a deterioration in the quality of groundwater for human consumption around the world. Beyond the essential evaluation of groundwater dynamics and quality, analyzing the situation from the perspective of the Ecosystem Services
[...] Read more.
Increasing pressures on groundwater in the last decades have led to a deterioration in the quality of groundwater for human consumption around the world. Beyond the essential evaluation of groundwater dynamics and quality, analyzing the situation from the perspective of the Ecosystem Services Assessment (ESA) approach can be useful to support aquifer management plans aiming to recover aquifers’ capacity to provide good quality water. This work illustrates how to implement the ESA using groundwater flow and nitrate transport modelling for evaluating future trends of the provisioning service Groundwater of Good Quality for Human Supply. It has been applied to the Medina del Campo Groundwater Body (Spain), where the intensification of agricultural activities and groundwater exploitation since the 1970s caused severe nitrate pollution. Nitrate status and future trends under different fertilizer and aquifer exploitation scenarios were modelled with MT3DMS coupled to a MODFLOW model calibrated with piezometric time series. Historical land use and fertilizer data were compiled to assess nitrogen loadings. Besides the uncertainties of the model, the results clearly show that: (i) managing fertilizer loads is more effective than managing aquifer exploitation; and (ii) only the cessation of nitrogen application by the year 2030 would improve the evaluated provisioning service in the long term. The study illustrates how the ESA can be incorporated to evaluate the expected relative impact of different management actions aimed at improving significant groundwater services to humans.
Full article
(This article belongs to the Special Issue Hydrological Modelling for the Sustainable Management of Water Resources in River Basins)
►▼
Show Figures

Figure 1
Open AccessArticle
Evaluation of Rainfall Distribution Based on the Precipitation Concentration Index: A Case Study over the Selected Summer Rainfall Regions of South Africa
by
Christina M. Botai, Joel O. Botai, Mxolisi B. Mukhawana, Jaco de Wit, Ndumiso S. Masilela, Nosipho Zwane and Henerica Tazvinga
Hydrology 2025, 12(6), 136; https://doi.org/10.3390/hydrology12060136 - 3 Jun 2025
Abstract
►▼
Show Figures
The Precipitation Concentration Index (PCI) is considered a powerful tool that can be used to analyse the spatial and temporal distribution and variability of precipitation over a region. It plays a significant role in planning and managing water resources, including monitoring and forecasting
[...] Read more.
The Precipitation Concentration Index (PCI) is considered a powerful tool that can be used to analyse the spatial and temporal distribution and variability of precipitation over a region. It plays a significant role in planning and managing water resources, including monitoring and forecasting drought and flood risks. As such, the present study used the PCI to investigate the spatio-temporal distribution of precipitation in summer rainfall regions covering six selected South African provinces. Specifically, this study analysed monthly precipitation data from 49 rainfall districts spanning from 1979 to 2023 and assessed the spatio-temporal variability patterns of annual, seasonal and supra-seasonal PCI values and their trends based on the Mann–Kendall trend test. Pearson’s correlation was used to evaluate the relationship between the PCI values and precipitation across the provinces. Moderate annual PCI values were observed mainly in KwaZulu-Natal and the eastern regions of the Free State and Mpumalanga provinces. A large portion of the study site exhibited irregular annual precipitation concentrations. The PCI decreased by −1.5 and −1.2 magnitudes of change during 1979–1989 and 2000–2011 and increased by 2.1 and 2.8 magnitudes between 1990–2000 and 2012–2023, respectively. Uniform precipitation concentration was mostly recorded during the December–January–February (DJF) season. The entire study area recorded moderate precipitation concentration during the March–April–May (MAM) and September–October–November (SON) seasons (with exceptions for KwaZulu-Natal (KZN)). In addition, irregular precipitation concentration dominated during the June–July–August (JJA) rainy season. All provinces except KZN recorded positive trends in annual PCI. Also, positive trends in PCI were observed during the supra-wet season across the provinces, except KZN and in parts of the Free State. Furthermore, negative trends in seasonal PCI were mostly dominant during DJF and MAM, while positive trends were mostly observed during SON and JJA rainy seasons. The annual PCI values were positively correlated with annual precipitation in KZN, Free State and Limpopo, while negative correlations were observed in Mpumalanga and North West provinces. The results presented in this study contribute to drought and flood monitoring in support of water resource management and planning.
Full article

Figure 1
Open AccessArticle
Balancing Hydrological Sustainability and Heritage Conservation: A Decadal Analysis of Water-Yield Dynamics in the Honghe Hani Rice Terraces
by
Linlin Huang, Yunting Lyu, Linxuan Miao and Sen Li
Hydrology 2025, 12(6), 135; https://doi.org/10.3390/hydrology12060135 - 31 May 2025
Abstract
The Honghe Hani Rice Terraces, a UNESCO World Heritage agroecosystem, embody a millennia-old synergy of cultural heritage and ecological resilience, yet face declining water yields amid land-use intensification and climate variability. This study employs the InVEST model and geographic detector analysis to quantify
[...] Read more.
The Honghe Hani Rice Terraces, a UNESCO World Heritage agroecosystem, embody a millennia-old synergy of cultural heritage and ecological resilience, yet face declining water yields amid land-use intensification and climate variability. This study employs the InVEST model and geographic detector analysis to quantify water-yield dynamics from 2010 to 2020 and identify their spatial and mechanistic drivers. Annual water yield averaged 558 mm, with cultivated lands contributing 33% of total volume, while built-up areas reached 980 mm per unit in 2018. A 31% decline by 2020, driven by cropland fragmentation and tourism growth, revealed persistent-yield hotspots in forested central-eastern terraces and cold spots in southwestern dryland margins. Land-use pattern accounted for 80–95% of yield variability, exacerbated by temperature interactions. Forests, delivering 68.7 million m3 over the decade, highlight the hydrological significance of traditional landscape mosaics. These findings advocate reforestation in critical recharge zones, terrace restoration to preserve agroecological integrity, and regulated tourism integrating rainwater harvesting to sustain water security and cultural heritage. By blending hydrological modeling with socio-cultural insights, this study provides a scalable framework for safeguarding terraced agroecosystems worldwide, aligning heritage conservation with sustainable development.
Full article
(This article belongs to the Special Issue Geographic Information Systems (GIS) Techniques and Applications for Sustainable Water Resources Management in Agriculture)
►▼
Show Figures

Figure 1
Open AccessArticle
Assessing the Risk of Natural and Socioeconomic Hazards Caused by Rainfall in the Middle Yellow River Basin
by
Yufeng Zhao, Shun Xiao, Xinshuang Wu, Shuitao Guo and Yingying Yao
Hydrology 2025, 12(6), 134; https://doi.org/10.3390/hydrology12060134 - 29 May 2025
Abstract
Extreme rainfall events directly increase flood risks and further trigger environmental geological hazards (i.e., landslides and debris flows). Meanwhile, rainfall-induced risks are determined by climate and geographical factors and spatial socioeconomic factors (e.g., population density and gross domestic product). However, the middle stream
[...] Read more.
Extreme rainfall events directly increase flood risks and further trigger environmental geological hazards (i.e., landslides and debris flows). Meanwhile, rainfall-induced risks are determined by climate and geographical factors and spatial socioeconomic factors (e.g., population density and gross domestic product). However, the middle stream of Yellow River Basin, where geological hazards frequently occur, lacks systematic analyses of rainfall-induced risks. In this study, we propose a comprehensive quantification framework and apply it to the Loess Plateau of northern China based on 40 years of climate data, streamflow measurements, and multiple spatial and geographical attribute datasets. A deep learning algorithm of long short-term memory (LSTM) was used to predict runoff, and the analytic hierarchy index was utilized to evaluate the comprehensive spatial risk considering natural and socioeconomic factors. Despite a decrease in annual precipitation in our study area of 1.46 mm per year, the intensity of heavy rainfall has increased since the 1980s, characterized by increases in rainstorm intensity (+4.68%), rainfall intensity (+7.07%), and rainfall amount (+5.34%). A comprehensive risk assessment indicated that high-risk areas accounted for 20.30% of the total area, with rainfall, geographical factors, and socioeconomic variables accounting for 53.90%, 29.72%, and 16.38% of risk areas, respectively. Rainfall was the dominant factor that determined the risk, and geographical and socioeconomic properties characterized the vulnerability and resilience of disasters. Our study provided an evaluation framework for multi-hazard risk assessment and insights for the development of disaster prevention and reduction policies.
Full article
(This article belongs to the Special Issue Advances in the Measurement, Utility and Evaluation of Precipitation Observations)
►▼
Show Figures

Figure 1
Open AccessReview
Enhancing Flood Risk Management: A Review on Numerical Modelling of Past Flood Events
by
José González-Cao, Helena Barreiro-Fonta, Diego Fernández-Nóvoa and Orlando García-Feal
Hydrology 2025, 12(6), 133; https://doi.org/10.3390/hydrology12060133 - 29 May 2025
Abstract
►▼
Show Figures
Recent scientific literature has consistently highlighted a significant increase in both the frequency and intensity of flood events, primarily attributed to the effects of climate change. Projections suggest that this trend will likely intensify in the coming decades. In this context, enhancing our
[...] Read more.
Recent scientific literature has consistently highlighted a significant increase in both the frequency and intensity of flood events, primarily attributed to the effects of climate change. Projections suggest that this trend will likely intensify in the coming decades. In this context, enhancing our understanding of flooding dynamics becomes not only necessary but urgent. A critical component of this advancement lies in the numerical analysis of historical flood events, which provides valuable insights into flood behaviour across extended temporal and spatial scales. This approach enables two key outcomes: a significant improvement in conventional methods for estimating return periods and a reduction in the uncertainties associated with historical flood events by simulating multiple plausible scenarios to identify the most likely one. This paper presents a comprehensive review of the scientific literature focused on the numerical simulation and reconstruction of past flood events. Two main conclusions emerge from this review: First, the temporal scope of the studies is notably wide, covering events ranging from glacial periods to those occurring in the mid-20th century. Second, there exists a pronounced spatial imbalance in the geographical distribution of these studies, with certain regions significantly underrepresented. This review provides a valuable resource for researchers and practitioners working in flood risk assessment and hydrological modelling. By consolidating existing knowledge, it supports the development and refinement of decision-support tools aimed at improving mitigation strategies to reduce the impact of flooding on both populations and infrastructure.
Full article

Figure 1
Open AccessArticle
Study on the Surface Water Chemical Composition and Water Quality Pollution Characteristics of the Shiyang River Basin, China
by
Haifeng Wang, Shaoqing Wu, Jihai Xu, Lixia Zhang, Kuijing Li, Jisheng Li, Heping Shu and Jihua Chu
Hydrology 2025, 12(6), 132; https://doi.org/10.3390/hydrology12060132 - 29 May 2025
Abstract
The surface water quality issue in arid regions is becoming increasingly severe and has become a significant challenge for global environmental protection and water resource management. By continuously collecting surface water samples (2000~2024) and utilizing hydrochemical and principal component analysis, the changes in
[...] Read more.
The surface water quality issue in arid regions is becoming increasingly severe and has become a significant challenge for global environmental protection and water resource management. By continuously collecting surface water samples (2000~2024) and utilizing hydrochemical and principal component analysis, the changes in the chemical composition of surface water and its water quality pollution characteristics are examined in the Shiyang River Basin. The surface water anion concentrations are characterized by HCO3− > SO42− > Cl−, with average concentrations of 214.11 mg/L, 117.31 mg/L, and 21.61 mg/L, respectively. The cation concentrations follow the trend of Ca2+ > Mg2+ > Na+ > K+, with average concentrations of 56.22 mg/L, 33.75 mg/L, 22.91 mg/L, and 5.33 mg/L, respectively. The dominant water types are Ca-HCO3 and Ca (Mg)-HCO3 in the mountainous area and in the plains, respectively. The weathering of carbonates and silicates is the main controlling factor for the evolution process of surface water. Strong evaporation leads to significant differences in ion concentrations, which is manifested as low in mountainous areas and high in plain areas. In addition, the surface water quality in the plains is worse than that of the mountainous areas. The main pollution indicators include DO, CODMn, COD, BOD5, NH4+-N, TP, TN, and fecal coliforms. The surface water quality of Hongyashan Reservoir and Caiqi has improved significantly, reflecting the impact of the water diversion project. The results of this study are of great significance for improving water resource management and ensuring the sustainability of the ecological environment in arid regions.
Full article
(This article belongs to the Special Issue Hydrodynamics and Water Quality of Rivers and Lakes)
►▼
Show Figures

Figure 1
Open AccessArticle
Precipitation-Related Atmospheric Nutrient Deposition in Farmington Bay: Analysis of Spatial and Temporal Patterns
by
Gustavious P. Williams, A. Woodruff Miller, Amin Aghababaei, Abin Raj Chapagain, Pitamber Wagle, Yubin Baaniya, Rachel H. Magoffin, Xueyi Li, Taylor Miskin, Peter D. Oldham, Samuel J. Oldham, Tyler Peterson, Lyle Prince, Kaylee B. Tanner, Anna C. Cardall and Daniel P. Ames
Hydrology 2025, 12(6), 131; https://doi.org/10.3390/hydrology12060131 - 27 May 2025
Abstract
►▼
Show Figures
This study quantifies the atmospheric deposition (AD) of nutrient loads into the Farmington Bay ecosystem via wet deposition over a three-year period. We analyzed nutrient concentrations from 509 total phosphorus (TP), 507 orthophosphate (OP), and 511 total nitrogen (TN) samples collected at seven
[...] Read more.
This study quantifies the atmospheric deposition (AD) of nutrient loads into the Farmington Bay ecosystem via wet deposition over a three-year period. We analyzed nutrient concentrations from 509 total phosphorus (TP), 507 orthophosphate (OP), and 511 total nitrogen (TN) samples collected at seven locations around the Bay. We estimated AD loads using two different spatial interpolation methods, Kriging and Inverse Distance Weighting (IDW), as well as average concentrations. The loads computed using Kriging and IDW were similar, but the loads computed using sample averages were about 70% smaller. We estimated that annual atmospherically deposited nutrient loads range from 306 to 594 Mg for TN, 73 to 195 Mg for TP, and 43 to 144 Mg for OP. The loads in 2023 were significantly higher than those in 2021 and 2022, a phenomenon we attribute to higher precipitation and a major loading event that occurred on 13 April 2023. Based on comparison with studies concerning nearby Utah Lake, the total loads could be two to three times larger than our estimates. These studies suggest that fine particulate matter may significantly contribute to AD nutrient loads, but these loads are not captured by our sampling method. However, the inclusion of non-water surfaces in Farmington Bay may mitigate this difference.
Full article

Figure 1
Open AccessArticle
Modeling Estuarine Algal Bloom Dynamics with Satellite Data and Spectral Index-Based Classification
by
Mayya Podsosonnaya, Maria J. Schreider and Sergei Schreider
Hydrology 2025, 12(6), 130; https://doi.org/10.3390/hydrology12060130 - 26 May 2025
Abstract
Macroalgae are an integral part of estuarine primary production; however, their excessive growth may have severe negative impacts on the ecosystem. Although it is generally believed that algal blooms may be caused by a combination of excessive nutrients and temperature, their occurrences are
[...] Read more.
Macroalgae are an integral part of estuarine primary production; however, their excessive growth may have severe negative impacts on the ecosystem. Although it is generally believed that algal blooms may be caused by a combination of excessive nutrients and temperature, their occurrences are hard to predict, and quantitative monitoring is a logistical challenge which requires the development of reliable and inexpensive techniques. This can be achieved by implementation of processing algorithms and indices on multi-spectral satellite images. Tuggerah Lakes estuary on the Central Coast of NSW was studied because of the regular occurrences of blooms, primarily of green filamentous algae. The detection of algal blooms based on the red-edge effect of the chlorophyll provided consistent results supported by direct observations. The Floating Algae Index (FAI) was identified as the most accurate index for detecting algal blooms in shallow areas, following a comparative analysis of six commonly used algae detection indices. Logistic regression was implemented where FAI was used as a predictor of two clusters, “bloom” and “non-bloom”. FAI was calculated for multi-spectral satellite images based on pixels of 20 × 20 m, covering the entire area of the Tuggerah Lakes. Seven sample points (pixels) were chosen, and the optimal threshold was found for each pixel to assign it to one of the two clusters. The logistic regression model was trained for each pixel; then the optimal parameters for its coefficients and the optimal classification threshold were obtained by cross-validation based on bootstrapping. Probabilities for classifying clusters as either “bloom” or “non-bloom” were predicted with respect to the optimal threshold. The resulting model can be used to estimate probability of macroalgal blooms in coastal estuaries, allowing quantitative monitoring through time and space.
Full article
(This article belongs to the Special Issue Geographic Information Systems (GIS) Techniques and Applications for Sustainable Water Resources Management in Agriculture)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Automated Calibration of SWMM for Improved Stormwater Model Development and Application
by
Hossein Ahmadi, Durelle Scott, David J. Sample and Mina Shahed Behrouz
Hydrology 2025, 12(6), 129; https://doi.org/10.3390/hydrology12060129 - 25 May 2025
Abstract
The fast pace of urban development and increasing intensity of precipitation events have made managing urban stormwater an increasingly difficult challenge. Hydrologic models are commonly used to predict flows and assess the performance of stormwater controls, often based on a hypothetical yet standardized
[...] Read more.
The fast pace of urban development and increasing intensity of precipitation events have made managing urban stormwater an increasingly difficult challenge. Hydrologic models are commonly used to predict flows and assess the performance of stormwater controls, often based on a hypothetical yet standardized design storm. The Storm Water Management Model (SWMM) is widely used for simulating runoff in urban watersheds. However, calibration of SWMM, as with all hydrologic models, is often plagued with issues such as subjectivity, and an abundance of model parameters, leading to delays and inefficiencies in model development and application. Further development of modeling and simulation tools to aid in design is critical in improving the function of stormwater management systems. To address these issues, we developed an integration of PySWMM (a Python wrapper (tool) for SWMM) and Pymoo (a Python package for multi-objective optimization) to automate the SWMM calibration process. The tool was tested using a case study urban watershed in Fredericksburg, VA. This tool can employ either a single-objective or multi-objective approach to calibrate a SWMM model by minimizing the error between prediction and observed values. This tool uses performance metrics including Nash-Sutcliffe Efficiency (NSE), Percent Bias (PBIAS), and Root Mean Square Error (RMSE) Standardized Ratio (RSR) for both single-event and long-term continuous rainfall-runoff processes. During multi-objective optimization calibration, the model achieved NSE, PBIAS, and RSR values of 0.73, 17.1, and 0.52, respectively; while the validation period recorded values of 0.86, 13.1, and 0.37, respectively. Additionally, in the single-objective optimization test case, the model yielded NSE values of 0.68 and 0.73 for the calibration and validation, respectively. The tool also supports parallelized optimization algorithms and utilizes Application Programming Interfaces (APIs) to dynamically update SWMM model parameters, accelerating both model execution and convergence. The tool successfully calibrated the SWMM model, delivering reliable results with suitable computational performance.
Full article
(This article belongs to the Special Issue Advances in Urban Hydrology and Stormwater Management)
►▼
Show Figures

Figure 1
Open AccessArticle
Triangular Fuzzy Finite Element Solution for Drought Flow of Horizontal Unconfined Aquifers
by
Christos Tzimopoulos, Nikiforos Samarinas, Kyriakos Papadopoulos and Christos Evangelides
Hydrology 2025, 12(6), 128; https://doi.org/10.3390/hydrology12060128 - 23 May 2025
Abstract
In this paper, a novel approximate triangular fuzzy finite element method (FEM) is proposed to solve the one-dimensional second-order unsteady nonlinear fuzzy partial differential Boussinesq equation. The physical problem concerns the case of the drought flow of a horizontal unconfined aquifer with a
[...] Read more.
In this paper, a novel approximate triangular fuzzy finite element method (FEM) is proposed to solve the one-dimensional second-order unsteady nonlinear fuzzy partial differential Boussinesq equation. The physical problem concerns the case of the drought flow of a horizontal unconfined aquifer with a limited breath B and special boundary conditions: (a) at x = 0, the water level is equal to zero, and (b) at x = B, the flow rate is equal to zero due to the presence of an impermeable wall. The initial water table is assumed to be curvilinear, following the form of an inverse incomplete beta function. To account for uncertainties in the system, the hydraulic parameters—hydraulic conductivity (K) and porosity (S)—are treated as fuzzy variables, considering sources of imprecision such as measurement errors and human-induced uncertainties. The performance of the proposed fuzzy FEM scheme is compared with the previously developed orthogonal fuzzy FEM solution as well as with an analytical solution. The results are in close agreement with those of the other methods, with the mean error of the analytical solution found to be equal to . Furthermore, the possibility theory is applied and fuzzy estimators constructed, leading to strong probabilistic interpretations. These findings provide valuable insights into the hydraulic properties of unconfined aquifers, aiding engineers and water resource managers in making informed and efficient decisions for sustainable hydrological and environmental planning.
Full article
(This article belongs to the Topic Advances in Groundwater Science and Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Parsimonious Model of Groundwater Recharge Potential as Seen Related with Two Topographic Indices and the Leaf Area Index
by
Rodríguez-Moreno Victor Manuel and Kretzschmar Thomas Gunter
Hydrology 2025, 12(6), 127; https://doi.org/10.3390/hydrology12060127 - 22 May 2025
Abstract
►▼
Show Figures
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential
[...] Read more.
A concise model, utilizing the threshold values of closed depressions, the convergence index, and the leaf area index (LAI) that play a significant role in modeling vegetation–atmosphere interactions and understanding the impact of vegetation on the hydrological cycle, was employed to pinpoint potential aquifer recharge centroids. The LAI index served as a geographic mask, linking centroid locations to soil vegetation cover. Analyzing a paired subsample of 500 centroids for each strata (true and false), we observed that maximum values of true centroids, indicating potential groundwater recharge, correlated with the presence of abundant vegetation (0.074 < LAI < 0.639). Conversely, lower LAI values were associated with sparse vegetation in false centroids (0.01 < LAI < 0.590). The study’s findings hold promising implications for aquifer management, biodiversity conservation, hydric planning, and land use protection, making a substantial contribution to the field. The recharge hypothesis is theoretically sound and empirically supported to propose that areas of high topographic convergence and closed depressions are potential water recharge zones, and these locations may exhibit permanent or denser vegetation, reflected as higher LAI values. This happens because water accumulates or lingers in these zones, soil moisture is maintained more consistently, and plant roots access water for longer periods, even during dry seasons. Vegetation becomes more resilient and persistent (possibly even forming phreatophytes—plants accessing groundwater). Additionally, there is potential for expanding the research by incorporating field observations, including tracking the routes of surface and subsurface runoff and determining arrival times to the aquifer. Such studies are increasingly vital for addressing contemporary environmental and water resource challenges.
Full article

Figure 1
Open AccessArticle
Microplastic Pollution in Tropical River: Fourier Transform Infrared Spectroscopy-Based Characterization of Abundance and Polymer Composition in Water and Sediments from Filobobos River, Mexico
by
Gleybis Hernández-Morales, María Cristina López-Mendez, Alan Antonio Rico-Barragán, Jesús Pérez-Moreno, Carolina Peña-Montes, Luis Alberto Peralta-Pelaez and Humberto Raymundo González-Moreno
Hydrology 2025, 12(5), 124; https://doi.org/10.3390/hydrology12050124 - 21 May 2025
Abstract
Veracruz is a megadiverse state facing great water resource management challenges. The contamination of water bodies with external materials of anthropogenic origin stands out, including those derived from plastic products, which are deemed ubiquitous, emerging contaminants that have gained notoriety in recent decades
[...] Read more.
Veracruz is a megadiverse state facing great water resource management challenges. The contamination of water bodies with external materials of anthropogenic origin stands out, including those derived from plastic products, which are deemed ubiquitous, emerging contaminants that have gained notoriety in recent decades due to the extent and effects of their presence, persistence and distribution in aquatic ecosystems. Being a significant environmental threat, their presence, persistence and distribution in aquatic ecosystems are deserving of a more detailed study. This research focused on analyzing microplastic (MP) retention and characterization in environmental matrixes (water and sediment) in the Bobos River’s lower basin, also taking into account other water physicochemical parameters, including a pH range from slightly acidic (5.17) to slightly alkaline (8.94) as the maximum value and an average temperature of 28.87 °C (83.96 °F). MPs are most frequently found in the form of blue-colored fibers. A polymer analysis by Fourier Transform Infrared Spectroscopy (FTIR) revealed that the most common polymer was polyethylene (PE), which is the main component of most agricultural mulch and agrochemical containers. This research aims to enhance the understanding of the plastic matter contamination of water bodies, pointing out the need for further and deeper research on this subject.
Full article
(This article belongs to the Special Issue Recent Research Advances in Microplastics in Water and the Environment)
►▼
Show Figures

Graphical abstract
Open AccessArticle
The Utilization of a 3D Groundwater Flow and Transport Model for a Qualitative Investigation of Groundwater Salinization in the Ca Mau Peninsula (Mekong Delta, Vietnam)
by
Tran Viet Hoan, Karl-Gerd Richter, Felix Dörr, Jonas Bauer, Nicolas Börsig, Anke Steinel, Van Thi Mai Le, Van Cam Pham, Don Van Than and Stefan Norra
Hydrology 2025, 12(5), 126; https://doi.org/10.3390/hydrology12050126 - 20 May 2025
Abstract
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate
[...] Read more.
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate salinization dynamics across the CMP’s complex multi-aquifer system. Unlike previous studies that largely rely on model calibration, this research introduces a novel approach by systematically deriving the spatial distribution of longitudinal dispersivity based on sediment characteristics. Moreover, detailed land use mapping is integrated to assign spatially and temporally variable Total Dissolved Solids (TDS) values to the uppermost layers, thereby enhancing the model realism in areas where monitoring data are limited. The model was utilized not only to simulate the regional salinity evolution, but also to critically evaluate conceptual hypotheses related to the mechanisms driving groundwater salinization. Results reveal a strong influence of seasonal and land use factors on salinity variability in the upper aquifers, while deeper aquifers remain largely stable, affected primarily by paleosalinity and localized pumping. This integrated modeling approach contributes to a better understanding of regional-scale groundwater salinization and highlights both the potential and the limitations of numerical modeling under data-scarce conditions. The findings provide a valuable scientific basis for adaptive water resource management in vulnerable coastal zones.
Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Hydrology Home
- Aims & Scope
- Editorial Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Environments, Hydrology, Sustainability, Water
Critical Issues in Groundwater Pollution Monitoring and Risk Warning
Topic Editors: Wenjing Zhang, Wenxia Wei, Huan Huan, Zhi Dou, Yuanzheng ZhaiDeadline: 30 June 2025
Topic in
Hydrology, Water, Climate, Atmosphere, Agriculture, Geosciences
Advances in Hydro-Geological Research in Arid and Semi-Arid Areas
Topic Editors: Ahmed Elbeltagi, Quanhua Hou, Bin HeDeadline: 31 July 2025
Topic in
Energies, Hydrology, Remote Sensing, Water, Climate, Earth, Sustainability
Climate Change and Human Impact on Freshwater Water Resources: Rivers and Lakes
Topic Editors: Leszek Sobkowiak, Arthur Mynett, David PostDeadline: 30 September 2025
Topic in
Geosciences, Hydrology, Remote Sensing, Sustainability, Water
Advances in Hydrogeological Research
Topic Editors: Karl Auerswald, Jordan ClarkDeadline: 30 November 2025

Conferences
Special Issues
Special Issue in
Hydrology
Flood-to-Drought Transition Phenomena
Guest Editors: Andrzej Walega, Tommaso CaloieroDeadline: 30 June 2025
Special Issue in
Hydrology
Advances in the Measurement, Utility and Evaluation of Precipitation Observations
Guest Editors: Jiangjiang Zhang, Junliang JinDeadline: 12 August 2025
Special Issue in
Hydrology
Recent Research Advances in Microplastics in Water and the Environment
Guest Editors: Bangshuai Han, Samuel Tenney, Mathew D. SimpsonDeadline: 31 August 2025
Special Issue in
Hydrology
Isotope Hydrology in the U.S.
Guest Editor: James E. LandmeyerDeadline: 31 August 2025
Topical Collections
Topical Collection in
Hydrology
Feature Papers of Hydrology
Collection Editors: Ezio Todini, Tammo Steenhuis