Journal Description
Hydrology
Hydrology
is an international, peer-reviewed, open access journal on hydrology published monthly online by MDPI. The American Institute of Hydrology (AIH) and Japanese Society of Physical Hydrology (JSPH) are affiliated with Hydrology and their members receive discounts on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, ESCI (Web of Science), PubAg, GeoRef, and other databases.
- Journal Rank: JCR - Q2 (Water Resources) / CiteScore - Q1 (Oceanography)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 15.7 days after submission; acceptance to publication is undertaken in 2.8 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
- Journal Clusters of Water Resources: Water, Journal of Marine Science and Engineering, Hydrology, Resources, Oceans, Limnological Review, Coasts.
Impact Factor:
3.2 (2024);
5-Year Impact Factor:
3.0 (2024)
Latest Articles
Automating GIS-Based Cloudburst Risk Mapping Using Generative AI: A Framework for Scalable Hydrological Analysis
Hydrology 2025, 12(8), 196; https://doi.org/10.3390/hydrology12080196 - 23 Jul 2025
Abstract
►
Show Figures
Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments.
[...] Read more.
Accurate dynamic hydrological models are often too complex and costly for the rapid, broad-scale screening necessitated for proactive land-use planning against increasing cloudburst risks. This paper demonstrates the use of GPT-4 to develop a GUI-based Python 3.13.2 application for geospatial flood risk assessments. The study used instructive prompt techniques to script a traditional stream and catchment delineation methodology, further embedding it with a custom GUI. The resulting application demonstrates high performance, processing a 29.63 km2 catchment at a 1 m resolution in 30.31 s, and successfully identifying the main upstream contributing areas and flow paths for a specified area of interest. While its accuracy is limited by terrain data artifacts causing stream breaks, this study demonstrates how human–AI collaboration, with the LLM acting as a coding assistant guided by domain expertise, can empower domain experts and facilitate the development of advanced GIS-based decision-support systems.
Full article
Open AccessArticle
Definition of Groundwater Management Zones for a Fissured Karst Aquifer in Semi-Arid Northeastern Brazil
by
Hailton Mello da Silva, Luiz Rogério Bastos Leal, Cezar Augusto Teixeira Falcão Filho, Thiago dos Santos Gonçalves and Harald Klammler
Hydrology 2025, 12(8), 195; https://doi.org/10.3390/hydrology12080195 - 23 Jul 2025
Abstract
►▼
Show Figures
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds
[...] Read more.
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds of meters thick, resulting from a large sequence of carbonates piled up by thrust faults during tectonic plate collisions. Groundwater recharge and flow in this aquifer are greatly influenced by karst features, through the high density of sinkholes and vertical wells. Over the past four decades, population and agricultural activities have increased in the region, resulting in unsustainable groundwater withdrawal and, at the same time, water quality degradation. Therefore, it is important to develop legal and environmental management strategies. This work proposes the division of the karst area into three well-defined management zones by mapping karst structures, land use, and urban occupation, as well as the concentrations of chloride and nitrate in the region’s groundwater. Zone 1 in the north possesses the lowest levels of karstification, anthropization, and contamination, while zone 2 in the central region has the highest levels and zone 3 in the south ranging in-between (except for stronger karstification). The delimitation of management zones will contribute to the development and implementation of optimized zone-specific groundwater preservation and restoration strategies.
Full article

Figure 1
Open AccessFeature PaperArticle
Evolution of Rainfall Characteristics in Catalonia, Spain, Using a Moving-Window Approach (1950–2022)
by
Carina Serra, María del Carmen Casas-Castillo, Raül Rodríguez-Solà and Cristina Periago
Hydrology 2025, 12(7), 194; https://doi.org/10.3390/hydrology12070194 - 19 Jul 2025
Abstract
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation
[...] Read more.
A comprehensive analysis of the evolution of rainfall characteristics in Catalonia, NE Spain, was conducted using monthly data from 72 rain gauges over the period 1950–2022. A moving-window approach was applied at annual, seasonal, and monthly scales, calculating mean values, coefficients of variation (CV), and trends across 43 overlapping 31-year periods. To assess trends in these moving statistics, a modified Mann–Kendall test was applied to both the 31-year means and CVs. Results revealed a significant 10% decrease in annual rainfall, with summer showing the most pronounced decline, as nearly 90% of stations exhibited negative trends, while the CV showed negative trends in coastal areas and mostly positive trends inland. At the monthly scale, February, March, June, August, and December exhibited negative trends at more than 50% of stations, with rainfall reductions ranging from 20% to 30%. Additionally, the temporal evolution of Mann–Kendall trend coefficients within each 31-year moving window displayed a fourth-degree polynomial pattern, with a periodicity of 30–35 years at annual and seasonal scales, and for some months. Finally, at the annual scale and in two centennial series, the 80-year oscillations found were inversely correlated with the large-scale climate indices North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO).
Full article
(This article belongs to the Special Issue Advances in the Measurement, Utility and Evaluation of Precipitation Observations)
►▼
Show Figures

Figure 1
Open AccessArticle
Modeling of Hydrological Processes in a Coal Mining Subsidence Area with High Groundwater Levels Based on Scenario Simulations
by
Shiyuan Zhou, Hao Chen, Qinghe Hou, Haodong Liu and Pingjia Luo
Hydrology 2025, 12(7), 193; https://doi.org/10.3390/hydrology12070193 - 19 Jul 2025
Abstract
►▼
Show Figures
The Eastern Huang–Huai region of China is a representative mining area with a high groundwater level. High-intensity underground mining activities have not only induced land cover and land use changes (LUCC) but also significantly changed the watershed hydrological behavior. This study integrated the
[...] Read more.
The Eastern Huang–Huai region of China is a representative mining area with a high groundwater level. High-intensity underground mining activities have not only induced land cover and land use changes (LUCC) but also significantly changed the watershed hydrological behavior. This study integrated the land use prediction model PLUS and the hydrological simulation model MIKE 21. Taking the Bahe River Watershed in Huaibei City, China, as an example, it simulated the hydrological response trends of the watershed in 2037 under different land use scenarios. The results demonstrate the following: (1) The land use predictions for each scenario exhibit significant variation. In the maximum subsidence scenario, the expansion of water areas is most pronounced. In the planning scenario, the increase in construction land is notable. Across all scenarios, the area of cultivated land decreases. (2) In the maximum subsidence scenario, the area of high-intensity waterlogging is the greatest, accounting for 31.35% of the total area of the watershed; in the planning scenario, the proportion of high-intensity waterlogged is the least, at 19.10%. (3) In the maximum subsidence scenario, owing to the water storage effect of the subsidence depression, the flood peak is conspicuously delayed and attains the maximum value of 192.3 m3/s. In the planning scenario, the land reclamation rate and ecological restoration rate of subsidence area are the highest, while the regional water storage capacity is the lowest. As a result, the total cumulative runoff is the greatest, and the peak flood value is reduced. The influence of different degrees of subsidence on the watershed hydrological behavior varies, and the coal mining subsidence area has the potential to regulate and store runoff and perform hydrological regulation. The results reveal the mechanism through which different land use scenarios influence hydrological processes, which provides a scientific basis for the territorial space planning and sustainable development of coal mining subsidence areas.
Full article

Figure 1
Open AccessFeature PaperArticle
Comprehensive Assessment of Water Quality of China’s Largest Freshwater Lake Under the Impact of Extreme Floods and Droughts
by
Zhiyu Mao, Junxiang Cheng, Ligang Xu, Mingliang Jiang and Hailin You
Hydrology 2025, 12(7), 192; https://doi.org/10.3390/hydrology12070192 - 14 Jul 2025
Abstract
►▼
Show Figures
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This
[...] Read more.
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This study evaluated the water quality of Poyang Lake in a recent 10-year span by the water quality index (WQI), trophic level index (TLI) and a newly constructed comprehensive evaluation index, and it analyzed the trend of water quality change under extreme events. Meanwhile, the main factors affecting the water quality of Poyang Lake were analyzed by partial least squares (PLS), a multivariate statistical method that accounts for multicollinearity. The results indicate that: (1) The water quality of Poyang Lake in summer and autumn is slightly worse than that in spring and winter. Each water quality index reflects the distinct states of the water environment in Poyang Lake. (2) Each water quality evaluation index responds differently to influencing factors. (3) Extreme flood and drought events have markedly different impacts on the water environment of Poyang Lake, exhibiting significant spatial heterogeneity. Domestic sewage discharge and total water resources have a relatively great impact on the water environment of Poyang Lake. The results of this study provide important insights for water quality management and policy formulation in Poyang Lake, supporting sustainable regional development.
Full article

Figure 1
Open AccessReview
Aquatic Pollution in the Bay of Bengal: Impacts on Fisheries and Ecosystems
by
Nowrin Akter Shaika, Saleha Khan, Sadiqul Awal, Md. Mahfuzul Haque, Abul Bashar and Halis Simsek
Hydrology 2025, 12(7), 191; https://doi.org/10.3390/hydrology12070191 - 11 Jul 2025
Abstract
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as
[...] Read more.
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and microplastics have been reported at concerning levels in the soil and water in aquatic ecosystems. Rivers act as key routes, transporting pollutants from inland sources to the Bay of Bengal. These contaminants disrupt metabolic and physiological functions in fish and other aquatic species and pose serious threats to food safety and public health through bioaccumulation. Harmful algal blooms (HABs), caused by nutrient enrichment, further exacerbate ecosystem degradation in the Bay of Bengal. The review highlights the immediate need for strengthened pollution control regulations, real-time water quality monitoring, sustainable farming practices, and community-based policy interventions to preserve biodiversity and safeguard fisheries.
Full article
(This article belongs to the Section Surface Waters and Groundwaters)
►▼
Show Figures

Figure 1
Open AccessArticle
Reproducibility Limits of the Frequency Equation for Estimating Long-Linear Internal Wave Periods in Lake Biwa
by
Hibiki Yoneda, Chunmeng Jiao, Keisuke Nakayama, Hiroki Matsumoto and Kazuhide Hayakawa
Hydrology 2025, 12(7), 190; https://doi.org/10.3390/hydrology12070190 - 11 Jul 2025
Abstract
In a large deep lake, the generation of internal Kelvin waves and internal Poincaré waves due to wind stress on the lake surface is a significant phenomenon. These internal waves play a crucial role in material transport within the lake and have profound
[...] Read more.
In a large deep lake, the generation of internal Kelvin waves and internal Poincaré waves due to wind stress on the lake surface is a significant phenomenon. These internal waves play a crucial role in material transport within the lake and have profound effects on its ecosystem and environment. Our study, which investigated the modes of internal waves in Lake Biwa using the vertical temperature distribution from field observations, has yielded important findings. We have demonstrated the applicability of the frequency equation solutions, considering the Coriolis force. The period of the internal Poincaré waves, as observed in the field, was found to match the solutions of the frequency equation. For example, observational data collected in late October revealed excellent agreement with the theoretical solutions derived from the frequency equation, showing periods of 14.7 h, 11.8 h, 8.2 h, and 6.3 h compared to the theoretical values of 14.4 h, 11.7 h, 8.5 h, and 6.1 h, respectively. However, the periods of the internal Kelvin waves in the field observation results were longer than those of the theoretical solutions. The Modified Mathew function uses a series expansion around , making it difficult to estimate the periods of internal Kelvin waves under conditions where . Furthermore, in lakes with an elliptical shape, such as Lake Biwa, the elliptical cylinder showed better reproducibility than the circular cylinder. These findings have significant implications for the rapid estimation of internal wave periods using the frequency equation.
Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
►▼
Show Figures

Figure 1
Open AccessArticle
Evapotranspiration Partitioning in Selected Subtropical Fruit Tree Orchards Based on Sentinel 2 Data Using a Light Gradient-Boosting Machine (LightGBM) Learning Model in Malelane, South Africa
by
Prince Dangare, Zama E. Mashimbye, Paul J. R. Cronje, Joseph N. Masanganise, Shaeden Gokool, Zanele Ntshidi, Vivek Naiken, Tendai Sawunyama and Sebinasi Dzikiti
Hydrology 2025, 12(7), 189; https://doi.org/10.3390/hydrology12070189 - 11 Jul 2025
Abstract
The accurate estimation of evapotranspiration ( ) and its components are vital for water resource management and irrigation planning. This study models tree transpiration ( ) and for grapefruit, litchi, and mango orchards using light gradient-boosting machine (LightGBM)
[...] Read more.
The accurate estimation of evapotranspiration ( ) and its components are vital for water resource management and irrigation planning. This study models tree transpiration ( ) and for grapefruit, litchi, and mango orchards using light gradient-boosting machine (LightGBM) optimized using the Bayesian hyperparameter optimization. Grounds and for these crops were measured using the heat ratio method of monitoring sap flow and the eddy covariance technique for quantifying . The Sentinel 2 satellite was used to compute field leaf area index ( ). The modelled data were used to partition the orchard into beneficial ( ) and non-beneficial water uses (orchard floor evaporation— ). We adopted the 10-fold cross-validation to test the model robustness and an independent validation to test performance on unseen data. The 10-fold cross-validation and independent validation on and models produced high accuracy with coefficient of determination ( ) 0.88, Kling–Gupta efficiency ( ) 0.91, root mean square error ( ) 0.04 mm/h, and mean absolute error ( ) 0.03 mm/h for all the crops. The study demonstrates that LightGBM can accurately model the transpiration and evapotranspiration for subtropical tree crops using Sentinel 2 data. The study found that which combined soil evaporation and understorey vegetation transpiration contributed 35, 32, and 31% to the grapefruit, litchi and mango orchard evapotranspiration, respectively. We conclude that improvements on orchard floor management practices can be utilized to minimize non-beneficial water losses while promoting the productive water use ( ).
Full article
(This article belongs to the Special Issue GIS Modelling of Evapotranspiration with Remote Sensing)
►▼
Show Figures

Figure 1
Open AccessArticle
Dynamics of Nocturnal Evapotranspiration in a Dry Region of the Chinese Loess Plateau: A Multi-Timescale Analysis
by
Fengnian Guo, Dengfeng Liu, Shuhong Mo, Qiang Li, Fubo Zhao, Mingliang Li and Fiaz Hussain
Hydrology 2025, 12(7), 188; https://doi.org/10.3390/hydrology12070188 - 10 Jul 2025
Abstract
Evapotranspiration (ET) is an important part of agricultural water consumption, yet little is known about nocturnal evapotranspiration (ETN) patterns. An eddy covariance system was used to observe ET over five consecutive years (2020–2024) during the growing season in a
[...] Read more.
Evapotranspiration (ET) is an important part of agricultural water consumption, yet little is known about nocturnal evapotranspiration (ETN) patterns. An eddy covariance system was used to observe ET over five consecutive years (2020–2024) during the growing season in a dry farming area of the Loess Plateau. Daytime and nocturnal evapotranspiration were partitioned using the photosynthetically active radiation threshold to reveal the changing characteristics of ETN at multiple time scales and its control variables. The results showed the following: (1) In contrast to the non-significant trend in ETN on the diurnal and daily scales, monthly ETN dynamics exhibited two peak fluctuations during the growing season. (2) The contribution of ETN to ET exhibited seasonal characteristics, being relatively low in summer, with interannual variations ranging from 10.9% to 14.3% and an annual average of 12.8%. (3) The half-hourly ETN, determined by machine learning methods, was driven by a combination of factors. The main driving factors were the difference between surface temperature and air temperature (Ts-Ta) and net radiation (Rn), which have almost equivalent contributions. Regression analysis results suggested that Ta was the main factor influencing ETN/ET at the monthly scale. This study focuses on the nighttime water loss process in dry farming fields in Northwest China, and the results provide a basis for rational allocation and efficient utilization of agricultural water resources in arid regions.
Full article
(This article belongs to the Section Hydrology–Climate Interactions)
►▼
Show Figures

Figure 1
Open AccessArticle
Mapping of Closed Depressions in Karst Terrains: A GIS-Based Delineation of Endorheic Catchments in the Alburni Massif (Southern Apennine, Italy)
by
Libera Esposito, Guido Leone, Michele Ginolfi, Saman Abbasi Chenari and Francesco Fiorillo
Hydrology 2025, 12(7), 186; https://doi.org/10.3390/hydrology12070186 - 10 Jul 2025
Abstract
A deep interaction between groundwater and surface hydrology characterizes karst environments. These settings feature closed depressions, whose hydrological role varies depending on whether they have genetic and hydraulic relationships with overland–subsurface flow (epigenic) or deep groundwater circulation (hypogenic). Epigenic dolines and poljes are
[...] Read more.
A deep interaction between groundwater and surface hydrology characterizes karst environments. These settings feature closed depressions, whose hydrological role varies depending on whether they have genetic and hydraulic relationships with overland–subsurface flow (epigenic) or deep groundwater circulation (hypogenic). Epigenic dolines and poljes are among the diagnostic landforms of karst terrains. In this study, we applied a hydrological criterion to map closed depressions—including dolines—across the Alburni karst massif, in southern Italy. A GIS-based, semi-automatic approach was employed, combining the sink-filling method (applied to a 5 m DEM) with the visual interpretation of various informative layers. This process produced a raster representing the location and depth of karst closed depressions. This raster was then used to automatically delineate endorheic areas using classic GIS tools. The resulting map reveals a thousand dolines and hundreds of adjacent endorheic areas. Endorheic areas form a complex mosaic across the massif, a feature that had been poorly emphasized in previous works. The main morphometric features of the dolines and endorheic areas were statistically analyzed and compared with the structural characteristics of the massif. The results of the proposed mapping approach provide valuable insights for groundwater management, karst area protection, recharge modeling, and tracer test planning.
Full article
(This article belongs to the Special Issue Advances in Catchments Hydrology and Sediment Dynamics (Second Edition))
►▼
Show Figures

Figure 1
Open AccessArticle
The Impact of Shifts in Both Precipitation Pattern and Temperature Changes on River Discharge in Central Japan
by
Bing Zhang, Jingyan Han, Jianbo Liu and Yong Zhao
Hydrology 2025, 12(7), 187; https://doi.org/10.3390/hydrology12070187 - 9 Jul 2025
Abstract
►▼
Show Figures
Rivers play a crucial role in the hydrological cycle and serve as essential freshwater resources for both human populations and ecosystems. Climate change significantly alters precipitation patterns and river discharge variability. However, the impact of precipitation patterns (rainfall and snowfall) and air temperature
[...] Read more.
Rivers play a crucial role in the hydrological cycle and serve as essential freshwater resources for both human populations and ecosystems. Climate change significantly alters precipitation patterns and river discharge variability. However, the impact of precipitation patterns (rainfall and snowfall) and air temperature on river discharge in coastal zones remains inadequately understood. This study focused on Toyama Prefecture, located along the Sea of Japan, as a representative coastal area. We analyzed over 30 years of datasets, including air temperature, precipitation, snowfall, and river discharge, to assess the effects of climate change on river discharge. Trends in hydroclimatic datasets were assessed using the rescaled adjusted partial sums (RAPS) method and the Mann–Kendall (MK) non-parametric test. Furthermore, a correlation analysis and the Structural Equation Model (SEM) were applied to construct a relationship between precipitation, temperature, and river discharge. Our findings indicated a significant increase in air temperature at a rate of 0.2 °C per decade, with notable warming observed in late winter (January and February) and early spring (March). The average river fluxes for the Jinzu, Oyabe, Kurobe, Shou, and Joganji rivers were 182.52 m3/s, 60.37 m3/s, 41.40 m3/s, 38.33 m3/s, and 18.72 m3/s, respectively. The tipping point for snowfall decline occurred in 1992, marked by an obvious decrease in snowfall depth. The SEM showed that, although rainfall dominated the changes in river discharge (loading = 0.94), the transition from solid (snow) to liquid (rain) precipitation may alter the river discharge regime. The percentage of flood occurrence increased from 19% (1940–1992) to 41% (1993–2020). These changes highlight the urgent need to raise awareness about the impacts of climate change on river floods and freshwater resources in global coastal regions.
Full article

Figure 1
Open AccessArticle
Using Machine Learning to Develop a Surrogate Model for Simulating Multispecies Contaminant Transport in Groundwater
by
Thu-Uyen Nguyen, Heejun Suk, Ching-Ping Liang, Yu-Chieh Ho and Jui-Sheng Chen
Hydrology 2025, 12(7), 185; https://doi.org/10.3390/hydrology12070185 - 8 Jul 2025
Abstract
Traditional numerical models have been widely employed to simulate the transport of multispecies reactive contaminants in groundwater systems; however, their high computational cost limits their applicability in real-time or large-scale scenarios. Recent advances in artificial intelligence (AI) offer promising alternatives, particularly data-driven machine
[...] Read more.
Traditional numerical models have been widely employed to simulate the transport of multispecies reactive contaminants in groundwater systems; however, their high computational cost limits their applicability in real-time or large-scale scenarios. Recent advances in artificial intelligence (AI) offer promising alternatives, particularly data-driven machine learning techniques, for accelerating such simulations. This study presents the development of a surrogate model based on artificial neural networks (ANNs) to simulate the transport and decay of interacting multispecies contaminants in groundwater. High-fidelity training datasets are generated through finite difference-based reactive transport simulations across a wide range of environmental and geochemical conditions. The ANN model is trained to learn the complex nonlinear relationships governing the multispecies transport and transformation processes. Model validation reveals that the ANN surrogate accurately reproduces the spatial–temporal concentration profiles of both original and degradation species, capturing key dynamic behaviors with high precision. Notably, the ANN model achieves up to a 100-fold reduction in computational time compared to traditional analytical or semi-analytical solutions. These results highlight the ANN’s potential as an efficient and accurate surrogate modeling tool for groundwater contamination assessment, offering a valuable advancement for decision-making in environmental risk analysis and remediation planning.
Full article
(This article belongs to the Topic Advances in Groundwater Science and Engineering)
►▼
Show Figures

Figure 1
Open AccessArticle
Integrating the PLUS-InVEST Model to Project Water Conservation Dynamics and Decipher Climatic Drivers in the Chengdu–Chongqing Economic Zone Under Multiple Future Scenarios
by
Kangwen Zhu, Suqiong Li, Wei Huang, Peng Hou, Yaqun Liu, Jian Liu and Zihui Li
Hydrology 2025, 12(7), 184; https://doi.org/10.3390/hydrology12070184 - 7 Jul 2025
Abstract
►▼
Show Figures
Identifying the evolutionary trends of water conservation functions and their climatic impacts under future scenarios is crucial for enhancing regional ecological security. This study integrates the PLUS and InVEST models with projected land use and meteorological data to analyze water conservation patterns in
[...] Read more.
Identifying the evolutionary trends of water conservation functions and their climatic impacts under future scenarios is crucial for enhancing regional ecological security. This study integrates the PLUS and InVEST models with projected land use and meteorological data to analyze water conservation patterns in the Chengdu–Chongqing Economic Zone during 2030–2050 under natural development (ND) and ecological protection (EP) scenarios. Key findings include the following: (1) during 2000–2020, low-value areas decreased from 60% to 40%, while high-value zones expanded from 27.32% to 40.35%; (2) both the ND and EP scenarios project lower water conservation volumes compared to 2020 levels; (3) under the ND scenario, the combined proportion of high and extreme importance zones fluctuates at 0.51% (2030), 0.11% (2040), and 3.97% (2050); (4) spatial heterogeneity shows high-value clusters concentrated in Chengdu’s urban core and northeastern regions, contrasting with midland low-value areas; (5) the SSP1-1.9 climate scenario yields higher water conservation capacity with stronger spatial aggregation compared to SSP2-4.5. This integrated modeling of PLUS and InVEST provides scientific support for regional ecological security and sustainable development strategies.
Full article

Figure 1
Open AccessArticle
Geostatistics Precision Agriculture Modeling on Moisture Root Zone Profiles in Clay Loam and Clay Soils, Using Time Domain Reflectometry Multisensors and Soil Analysis
by
Agathos Filintas
Hydrology 2025, 12(7), 183; https://doi.org/10.3390/hydrology12070183 - 7 Jul 2025
Cited by 1
Abstract
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay
[...] Read more.
Accurate measurement and understanding of the spatiotemporal distribution of soil water content (SWC) are crucial in various environmental and agricultural sectors. The present study implements a novel precision agriculture (PA) approach under sugarbeet field conditions of two moisture-irrigation treatments with two subfactors, clay loam (CL) and clay (C) soils, for geostatistics modeling (seven models’ evaluation) of time domain reflectometry (TDR) multisensor network measurements. Two different sensor calibration methods (M1 and M2) were trialed, as well as the results of laboratory soil analysis for geospatial two-dimensional (2D) imaging for accurate GIS maps of root zone moisture profiles, granular, and hydraulic profiles in multiple soil layers (0–75 cm depth). Modeling results revealed that the best-fitted semi-variogram models for the granular attributes were circular, exponential, pentaspherical, and spherical, while for hydraulic attributes were found to be exponential, circular, and spherical models. The results showed that kriging modeling, spatial and temporal imaging for accurate profile SWC (m3·m−3) maps, the exponential model was identified as the most appropriate with TDR sensors using calibration M1, and the exponential and spherical models were the most appropriate when using calibration M2. The resulting PA profile maps depict spatiotemporal soil water variability with very high resolutions at the centimeter scale. The best validation measures of PA profile SWC maps obtained were Nash-Sutcliffe model efficiency NSE = 0.6657, MPE = 0.00013, RMSE = 0.0385, MSPE = −0.0022, RMSSE = 1.6907, ASE = 0.0418, and MSDR = 0.9695. The sensor results using calibration M2 were found to be more valuable in environmental irrigation decision-making for a more accurate and timely decision on actual crop irrigation, with the lowest statistical and geostatistical errors. The best validation measures for accurate profile SWC (m3·m−3) maps obtained for clay loam over clay soils. Visualizing the SWC results and their temporal changes via root zone profile geostatistical maps assists farmers and scientists in making informed and timely environmental irrigation decisions, optimizing energy, saving water, increasing water-use efficiency and crop production, reducing costs, and managing water–soil resources sustainably.
Full article
(This article belongs to the Special Issue Hydrological Processes in Agricultural Watersheds)
►▼
Show Figures

Figure 1
Open AccessArticle
Analyzing the Impact of Climate Change on Compound Flooding Under Interdecadal Variations in Rainfall and Tide
by
Jiun-Huei Jang, Tien-Hao Chang, Yen-Mo Wu, Ting-En Liao and Chih-Hung Hsu
Hydrology 2025, 12(7), 182; https://doi.org/10.3390/hydrology12070182 - 6 Jul 2025
Abstract
Coastal regions are increasingly threatened by compound flooding due to the increasing intensities of storm surges and rainfall under climate change. However, relevant research has been limited because significant amounts of data, scenarios, and computations are often required to evaluate long-term variations in
[...] Read more.
Coastal regions are increasingly threatened by compound flooding due to the increasing intensities of storm surges and rainfall under climate change. However, relevant research has been limited because significant amounts of data, scenarios, and computations are often required to evaluate long-term variations in compound flood risk. In this study, a framework was proposed through efficient hydraulic simulations and a consequence-based statistical method using data projected under different general circulation models (GCMs). The analysis focuses on analyzing the interdecadal trends of compound flood risk for a coastal area in southwestern Taiwan across a baseline period and four future periods in the short-term (2021–2040), mid-term (2041–2060), mid-to-long-term (2061–2080), and long-term (2081–2100). Although discrepancies exist in the short term, the results show that the values of the annual maximum flood area exhibit an increasing pattern in the future for all GCMs by increasing about 27.8% on average at the end of the 21st century. This means that, under the same flood areas given in the baseline period, the return periods will decrease, and flood events will occur more frequently in the future. This framework can be extended to other regions to assess the impacts of compound flooding with different geographical and meteorological conditions.
Full article
(This article belongs to the Special Issue Runoff Modelling under Climate Change)
►▼
Show Figures

Figure 1
Open AccessArticle
Uncertainty in Kinetic Energy Models for Rainfall Erosivity Estimation in Semi-Arid Regions
by
José Bandeira Brasil, Ana Célia Maia Meireles, Carlos Wagner Oliveira, Sirleide Maria de Menezes, Francisco Dirceu Duarte Arraes and Maria Simas Guerreiro
Hydrology 2025, 12(7), 181; https://doi.org/10.3390/hydrology12070181 - 4 Jul 2025
Abstract
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models
[...] Read more.
The Brazilian semi-arid Northeast plays a critical role in regional hydrology, where rainfall is marked by pronounced temporal variability and short duration, presenting significant challenges for understanding and managing hydrological and erosive processes. This study aims to evaluate the performance of empirical models for estimating rainfall kinetic energy (KE) and erosivity index (EI30) in this region, for all events and erosive events, using high-resolution rainfall data collected at the Federal University of Cariri (UFCA), Ceará. A total of 283 natural rainfall events were analyzed, with KE and EI30 values calculated using multiple models: Wischmeier and Smith, USDA, Van Dijk, a temporal variation-based model (KE_VT), and a regional model developed for Brazil’s semi-arid zone, which served as the reference. The results show a predominance of small rainfall events (<5.2 mm), though maximum EI30 values exceeded 1300 MJ ha−1 mm h−1, highlighting the potential for extreme erosive events. Comparative analysis revealed that all international models significantly underestimated KE and EI30 values compared to the regional reference, with the KE_VT model showing the closest approximation (13% underestimation), for all events and erosive events. Statistical assessments using the Wilcoxon test, Nash–Sutcliffe efficiency, and Willmott concordance index confirmed the superior performance of the KE_VT, for all events and erosive events. These findings underscore the importance of considering intra-event rainfall variability and regional calibration when modeling erosivity in semi-arid climates, contributing to more effective soil conservation and hydrological planning.
Full article
(This article belongs to the Special Issue Advances in the Measurement, Utility and Evaluation of Precipitation Observations)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Climate Change and Human Activities on the Flow of the Muling River
by
Xiang Meng, Chang-Lei Dai, Yi-Ding Zhang, Geng-Wei Liu, Xiao Yang and Xue Feng
Hydrology 2025, 12(7), 180; https://doi.org/10.3390/hydrology12070180 - 3 Jul 2025
Abstract
►▼
Show Figures
In the context of global warming and the intensification of human activities, the change in runoff is also increasing. It is very important to determine the change in runoff for the rational utilization of water resources. In order to determine the influencing factors
[...] Read more.
In the context of global warming and the intensification of human activities, the change in runoff is also increasing. It is very important to determine the change in runoff for the rational utilization of water resources. In order to determine the influencing factors of runoff change in Muling River, the SWAT model was used in this study to separate different coupling factors and calculate the contribution rate of a single factor to runoff change at the annual scale and quarterly scale, respectively. In the process of calibration, different single rate times were used to analyze the influence of different rate times on the calibration results. The results show that the runoff in the Muling River basin shows a downward trend, the quarterly temperature factor has the greatest influence on the runoff change, which is 50–60%, the annual precipitation has the greatest influence on the runoff change, which is 68%, and the maximum change in the runoff from the reservoir is 42.5% under the change in human activities. In the SWAT-CUP software, the optimal number of calibration for this basin is 500. This research provides a scientific basis for the flow analysis of the Muling River basin.
Full article

Figure 1
Open AccessArticle
Weathering Records from an Early Cretaceous Syn-Rift Lake
by
Yaohua Li, Qianyou Wang and Richard H. Worden
Hydrology 2025, 12(7), 179; https://doi.org/10.3390/hydrology12070179 - 3 Jul 2025
Abstract
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation
[...] Read more.
The Aptian–Albian interval represents a significant cooling phase within the Cretaceous “hothouse” climate, marked by dynamic climatic fluctuations. High-resolution continental records are essential for reconstructing terrestrial climate and ecosystem evolution during this period. This study examines a lacustrine-dominated succession of the Shahezi Formation (Lishu Rift Depression, Songliao Basin, NE Asia) to access paleo-weathering intensity and paleoclimate variability between the Middle Aptian and Early Albian (c. 118.2–112.3 Ma). Multiple geochemical proxies, including the Chemical Index of Alteration (CIA), were applied within a sequence stratigraphic framework covering four stages of lake evolution. Our results indicate that a hot and humid subtropical climate predominated in the Lishu paleo-lake, punctuated by transient cooling and drying events. Periods of lake expansion corresponded to episodes of intense chemical weathering, while two distinct intervals of aridity and cooling coincided with phases of a reduced lake level and fan delta progradation. To address the impact of potassium enrichment on CIA values, we introduced a rectangular coordinate system on A(Al2O3)-CN(CaO* + Na2O)-K(K2O) ternary diagrams, enabling more accurate weathering trends and CIA corrections (CIAcorr). Uncertainties in CIA correction were evaluated by integrating geochemical and petrographic evidence from deposits affected by hydrothermal fluids and external potassium addition. Importantly, our results show that metasomatic potassium addition cannot be reliably inferred solely from deviations in A-CN-K diagrams or the presence of authigenic illite and altered plagioclase. Calculations of “excess K2O” and CIAcorr values should only be made when supported by robust geochemical and petrographic evidence for external potassium enrichment. This work advances lacustrine paleoclimate reconstruction methodology and highlights the need for careful interpretation of weathering proxies in complex sedimentary systems.
Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
►▼
Show Figures

Figure 1
Open AccessArticle
Rainfall Organization and Storm Tracking in Urban Barcelona, NE Spain, Using a High-Resolution Rain Gauge Network
by
María del Carmen Casas-Castillo, Xavier Navarro and Raül Rodríguez-Solà
Hydrology 2025, 12(7), 178; https://doi.org/10.3390/hydrology12070178 - 3 Jul 2025
Cited by 1
Abstract
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense
[...] Read more.
Extreme rainfall in urban areas can cause major economic damage, a problem expected to intensify with climate change. Despite this, high-resolution studies at the city scale remain limited. This study analyzes rainfall organization and storm dynamics over Barcelona using data from a dense rain gauge network (1994–2019). The aim is to identify dominant spatial patterns and understand how storms evolve in relation to local urban and topographic features. Principal component analysis and simple scaling analysis revealed signs of a rainfall island effect, possibly linked to the urban heat island and modulated by orographic and coastal influences. Tailored rainfall indices highlighted a division between inland areas shaped by orography and coastal zones influenced by the sea. These spatial structures evolved with rainfall duration, shifting from localized contrasts at a 10 min resolution to more homogeneous distributions at daily scales. Storm tracking showed that 90% of speeds ranged from 5 to 60 km/h and intense rainfall events typically moved east–southeast toward the sea and north–northeast. Faster storms tended to follow preferred directions reflecting mesoscale circulations and possible modulations by local terrain. These findings underscore how urban morphology, local relief, and a coastal setting may shape rainfall at the city scale, in interaction with broader Mediterranean synoptic dynamics.
Full article
(This article belongs to the Special Issue Advances in the Measurement, Utility and Evaluation of Precipitation Observations)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Analysis of the Potential Impacts of Climate Change on the Mean Annual Water Balance and Precipitation Deficits for a Catchment in Southern Ecuador
by
Luis-Felipe Duque, Greg O’Donnell, Jimmy Cordero, Jorge Jaramillo and Enda O’Connell
Hydrology 2025, 12(7), 177; https://doi.org/10.3390/hydrology12070177 - 2 Jul 2025
Abstract
►▼
Show Figures
The mean annual water balance is essential for evaluating water availability in a catchment and planning water resources. Climate change alters this balance by affecting precipitation, evapotranspiration, and overall water availability. This study analyses the impact of climate change on the mean annual
[...] Read more.
The mean annual water balance is essential for evaluating water availability in a catchment and planning water resources. Climate change alters this balance by affecting precipitation, evapotranspiration, and overall water availability. This study analyses the impact of climate change on the mean annual water balance in the Catamayo catchment, a key water source for irrigation and hydropower in southern Ecuador and northern Peru. A Budyko-based approach was employed due to its conceptual simplicity and proven robustness for estimating long-term water balances under changing climatic conditions. Using outputs from 23 Global Circulation Models (GCMs) under CMIP6’s SSP2-4.5 and SSP8.5 scenarios, the results indicate increasing aridity, particularly in the lower and middle parts of the catchment, which correspond to arid and semi-arid zones. Water availability may decrease by 26.3 ± 12.3% to 33.3 ± 17% until 2080 due to negligible changes (statistically speaking) in average precipitation but rising evapotranspiration. However, historical precipitation analysis (1961–2020) reveals an increasing trend over this historical period which can be attributed to natural climatic variability associated to the El Nino-Southern Oscillation (ENSO), possibly enhanced by anthropogenic climate change. A novel hybrid method combining the statistics of historical precipitation deficits with GCM mean projections provides estimates of future precipitation deficits. These findings suggest potential reductions in crop yields and hydropower capacity, which (although not quantitatively assessed in this study) are inferred based on the projected decline in water availability. Such impacts could lead to higher energy costs, increased reliance on fossil fuels, and intensified competition for water. Mitigation measures, including water-saving strategies, energy diversification, and integrated water resource management, are recommended to address these challenges.
Full article

Figure 1

Journal Menu
► ▼ Journal Menu-
- Hydrology Home
- Aims & Scope
- Editorial Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Editorial Office
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Hydrology, Water, Climate, Atmosphere, Agriculture, Geosciences
Advances in Hydro-Geological Research in Arid and Semi-Arid Areas
Topic Editors: Ahmed Elbeltagi, Quanhua Hou, Bin HeDeadline: 31 July 2025
Topic in
Energies, Hydrology, Remote Sensing, Water, Climate, Earth, Sustainability
Climate Change and Human Impact on Freshwater Water Resources: Rivers and Lakes
Topic Editors: Leszek Sobkowiak, Arthur Mynett, David PostDeadline: 30 September 2025
Topic in
Geosciences, Hydrology, Remote Sensing, Sustainability, Water
Advances in Hydrogeological Research
Topic Editors: Karl Auerswald, Jordan ClarkDeadline: 30 November 2025
Topic in
Agriculture, Remote Sensing, Sustainability, Water, Hydrology, Limnological Review, Earth
Water Management in the Age of Climate Change
Topic Editors: Yun Yang, Chong Chen, Hao SunDeadline: 31 January 2026

Conferences
Special Issues
Special Issue in
Hydrology
Advances in the Measurement, Utility and Evaluation of Precipitation Observations
Guest Editors: Jiangjiang Zhang, Junliang JinDeadline: 12 August 2025
Special Issue in
Hydrology
Isotope Hydrology in the U.S.
Guest Editor: James E. LandmeyerDeadline: 31 August 2025
Special Issue in
Hydrology
Recent Research Advances in Microplastics in Water and the Environment
Guest Editors: Bangshuai Han, Samuel Tenney, Mathew D. SimpsonDeadline: 31 August 2025
Special Issue in
Hydrology
Runoff Modelling under Climate Change
Guest Editors: Carmelina Costanzo, Fabiola Gangi, Majid NiazkarDeadline: 31 August 2025
Topical Collections
Topical Collection in
Hydrology
Feature Papers of Hydrology
Collection Editors: Ezio Todini, Tammo Steenhuis