-
Why Olive Produces Many More Flowers than Fruit—A Critical Analysis
-
Efficient Micropropagation by Ex Vitro Rooting of Myrtus communis L.
-
Ascorbic Acid Mitigates Aluminum Stress Through Improved Antioxidant Mechanism in Highbush Blueberry (Vaccinium corymbosum L.)
-
Edible Coatings Enhance Storability and Preserve Quality of Kiwiberry (Actinidia arguta L.) cv. Ken’s Red
-
Compositional and Machine Learning Tools to Model Plant Nutrition: Overview and Perspectives
Journal Description
Horticulturae
Horticulturae
is an international, peer-reviewed, open access journal published monthly online by MDPI. The Spanish Society of Horticultural Sciences (SECH) is affiliated with Horticulturae and its members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within Scopus, SCIE (Web of Science), PubAg, AGRIS, FSTA, and other databases.
- Journal Rank: JCR - Q1 (Horticulture) / CiteScore - Q1 (Horticulture)
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 17.1 days after submission; acceptance to publication is undertaken in 2.4 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: reviewers who provide timely, thorough peer-review reports receive vouchers entitling them to a discount on the APC of their next publication in any MDPI journal, in appreciation of the work done.
Impact Factor:
3.0 (2024);
5-Year Impact Factor:
3.2 (2024)
Latest Articles
Testing a Depletion Nutrient Supply Strategy to Improve the Fertilization Management of “Cipollotto Nocerino” Spring Onion: Effect on Produce Yield and Quality Attributes
Horticulturae 2025, 11(8), 867; https://doi.org/10.3390/horticulturae11080867 - 22 Jul 2025
Abstract
Background: Conventional practices for the cultivation of “Cipollotto Nocerino” spring onion are mainly based on growers’ experience, and up to 250 kg/ha for N is commonly furnished among growing cycles. Facing the issue of reduced availability of natural resources for crop production (for
[...] Read more.
Background: Conventional practices for the cultivation of “Cipollotto Nocerino” spring onion are mainly based on growers’ experience, and up to 250 kg/ha for N is commonly furnished among growing cycles. Facing the issue of reduced availability of natural resources for crop production (for example mineral resources), we investigated the optimization of the productivity. Methods: In our research, we tested the use of depletion nutrient supply strategy (CAL-FERT®) to enhance fertilization in accordance with the principle of sustainable agriculture included in the Farm to Fork strategy. In our study, besides the common initial fertilization, three different strategies for cover fertilizations have been elaborated with the support of CAL-FERT® software. The treatments were as follows: (i) commercial standard fertilization as control (named CF); (ii) fertilization equivalent to 50% of the N applied in the control (named F-50); (iii) fertilization corresponding to 25% of the N applied in the control (named F-25); and (iv) strongly reduced fertilization compared to the control (named F-0). The parameters investigated included the following: plant height, yield, SPAD index, nitrogen use efficiency, dry matter, soluble solid content, and pyruvate contents in bulbs and leaves. Nitrogen content was also analyzed for both hypogeous and epigeous apparatuses. Results: Among the most interesting vegetative results, plant height and SPAD readings were reduced only by the extreme treatment F-0 compared with the other treatments at 104 days after planting. Regarding qualitative and productive parameters, the treatments F-50 and F-25 showed the highest yield without prejudging Soluble Solid Content and reducing pungency. Conclusion: In nutritional experiments, onion could be considered as a crop model to investigate quality in vegetables due to its consumption as fresh product and for its particular response, in terms of yield and quality, to fertilization. The use of simulation software can support the identification of strategies to reduce the nutrient supply without any detrimental effect on yield and other vegetative and qualitative parameters in onion crops.
Full article
(This article belongs to the Special Issue Productivity and Quality of Vegetable Crops under Climate Change)
►
Show Figures
Open AccessArticle
Influence of Mulching and Planting Density on Agronomic and Economic Traits of Melissa officinalis L.
by
Stefan V. Gordanić, Dragoja Radanović, Miloš Rajković, Milan Lukić, Ana Dragumilo, Snežana Mrđan, Petar Batinić, Natalija Čutović, Sara Mikić, Željana Prijić and Tatjana Marković
Horticulturae 2025, 11(8), 866; https://doi.org/10.3390/horticulturae11080866 - 22 Jul 2025
Abstract
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw
[...] Read more.
Melissa officinalis L. (Lamiaceae) is a perennial plant species widely used in the pharmaceutical and food industries, particularly valued for its sedative properties. This study investigates the impact of synthetic mulch film and planting density as two experimental factors on agronomic performance, raw material quality, and economic efficiency in lemon balm production. The experiment was conducted at three locations in Serbia (L1: Bačko Novo Selo, L2: Bavanište, L3: Vilandrica) from 2022 to 2024, using two planting densities on synthetic mulch film (F1: 8.3 plants m−2; F2: 11.4 plants m−2) and a control treatment without mulch (C). The synthetic mulch film used was a synthetic black polypropylene film (Agritela Black, 90 g/m2), uniformly applied in strips across the cultivation area, covering approximately 78% of the soil surface. The results showed consistent increases in morphological parameters and yield across the years. Plant height in F1 and F2 treatments ranged from 65 to 75 cm, while in the control it reached up to 50 cm (2022–2024). Fresh biomass yield varied from 13.4 g per plant (C) to 378.08 g per plant (F2), and dry biomass yield from 60.3 g (C) to 125.4 g (F2). The highest essential oil content was observed in F2 (1.2% in 2022), while the control remained at 0.8%. The F2 treatment achieved complete weed suppression throughout the experiment without the use of herbicides, demonstrating both agronomic and ecological advantages. Economic evaluation revealed that F2 generated the highest cumulative profit (€142,164.5) compared to the control (€65,555.3). Despite higher initial investment, F2 had the most favorable cost–benefit ratio in the long term. This study highlights the crucial influence of mulching and planting density on optimizing lemon balm production across diverse climatic and soil conditions, while also underscoring the importance of sustainable, non-chemical weed management strategies in lemon balm cultivation.
Full article
(This article belongs to the Special Issue Conventional and Organic Weed Management in Horticultural Production)
►▼
Show Figures

Figure 1
Open AccessArticle
Male Date Palm Chlorotype Selection Based on Fertility, Metaxenia, and Transcription Aspects
by
Hammadi Hamza, Mohamed Ali Benabderrahim, Achwak Boualleg, Federico Sebastiani, Faouzi Haouala and Mokhtar Rejili
Horticulturae 2025, 11(7), 865; https://doi.org/10.3390/horticulturae11070865 - 21 Jul 2025
Abstract
This study evaluated the influence of different male date palm cultivars, distinguished by their chloroplast haplotypes, on pollen quality, pollination efficiency, metaxenia effects, and gene expression during fruit development. Chloroplast DNA analysis of 37 male trees revealed multiple haplotypes, from which cultivars B25,
[...] Read more.
This study evaluated the influence of different male date palm cultivars, distinguished by their chloroplast haplotypes, on pollen quality, pollination efficiency, metaxenia effects, and gene expression during fruit development. Chloroplast DNA analysis of 37 male trees revealed multiple haplotypes, from which cultivars B25, P8, C22, and B46 were selected for further investigation. Pollen viability varied significantly among cultivars, with P8 and B25 exhibiting the highest germination rates and pollen tube elongation, while C22 showed the lowest. These differences correlated with pollination success: P8 and B25 achieved fertilization rates near 99%, whereas C22 remained below 43%. Pollination outcomes also varied in fruit traits. Despite its low pollen performance, C22 induced the production of larger fruits at the Bleh (Kimri) stage, potentially due to compensatory physiological mechanisms. Phytochemical profiling revealed significant cultivar effects: fruits from B25-pollinated trees had with lower moisture and polyphenol content but the higher sugar levels and soluble solids, suggesting accelerated maturation. Ripening patterns confirmed this finding, with B25 promoting the earliest ripening and B46 causing the most delayed. Gene expression analysis supported these phenotypic differences. Fruits pollinated by P8, B25, and B46 exhibited elevated levels of cell-division-related transcripts, particularly the PdCD_1 gene (PDK_XM_008786146.4, a gene encoding a cell division control protein), which was most abundant in P8. In contrast, fruits from C22-pollinated trees had the lowest expression of growth-related genes, suggesting a shift toward cell expansion rather than division. Overall, the results show the critical role of male genotype in influencing fertilization outcomes and fruit development, offering valuable insights for targeted breeding strategies at enhancing date palm productivity and fruit quality.
Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
►▼
Show Figures

Graphical abstract
Open AccessArticle
Delayed Starch Degradation Triggers Chromoplast Structural Aberration to Inhibit Carotenoid Cleavage: A Novel Mechanism for Flower Color Deepening in Osmanthus fragrans
by
Xiangling Zeng, Yunfei Tan, Xin Wen, Qiang He, Hui Wu, Jingjing Zou, Jie Yang, Xuan Cai and Hongguo Chen
Horticulturae 2025, 11(7), 864; https://doi.org/10.3390/horticulturae11070864 - 21 Jul 2025
Abstract
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud
[...] Read more.
The color of flowers in Osmanthus fragrans is regulated by carotenoid metabolism. The orange-red variety, Dangui, is believed to have evolved from the yellow variety, Jingui, through a natural bud mutation. This study uses the Jingui cultivar ‘Jinqiu Gui’ (JQG) and its bud mutation cultivar ‘Huolian Jindan’ (HLJD) as materials, combining genome resequencing, ultrastructural observation, targeted metabolomics, and transcriptomic analysis to elucidate the molecular and cellular mechanisms underlying flower color variation. Phylogenetic analysis confirms that HLJD is a natural bud mutation of JQG. Ultrastructural observations reveal that during petal development, chromoplasts are transformed from proplastids. In HLJD petals, starch granules degrade more slowly and exhibit abnormal morphology, resulting in chromoplasts displaying crystalline, tubular, and fibrous composite structures, in contrast to the typical spherical plastoglobuli found in JQG. Targeted metabolomics identified 34 carotenoids, showing significant increases in the levels of ε-carotene, γ-carotene, α-carotene, and β-carotene in HLJD petals compared to JQG, with these levels continuing to accumulate throughout the flowering process, while the levels of the cleavage products α-ionone and β-ionone decrease. Transcriptomic analysis indicates that carotenoid metabolic pathway genes do not correlate directly with the phenotype; however, 49 candidate genes significantly associated with pigment accumulation were identified. Among these, the expression of genes such as glycoside hydrolases (LYG036752, etc.), sucrose synthase (LYG010191), and glucose-1-phosphate adenylyltransferase (LYG003610) are downregulated in HLJD. This study proposes for the first time the pathway of “starch degradation delay → chromoplast structural abnormalities → carotenoid cleavage inhibition” for deepening flower color, providing a new theoretical model for the metabolic regulation of carotenoids in non-photosynthetic tissues of plants. This research not only identifies key target genes (such as glycoside hydrolases) for the color breeding of O. fragrans but also establishes a theoretical foundation for the color enhancement of other ornamental plants.
Full article
(This article belongs to the Special Issue Physiological and Molecular Biology of Ornamental Plants—2nd Edition)
►▼
Show Figures

Figure 1
Open AccessArticle
Screening of Substrates and Optimization of Formulations for Exogenous Nutrient Bags of Morchella sextelata (Black Morel)
by
Qi Yan, Weidong Zhang, Qi Wang, Tonghui Yang, Peng Wang, Ya Yu, Xiao Tan, Xueping Kang and Jiawei Wen
Horticulturae 2025, 11(7), 863; https://doi.org/10.3390/horticulturae11070863 - 21 Jul 2025
Abstract
In the artificial cultivation of Morchella sextelata (Black Morel), exogenous nutrient bags (ENBs) commonly employ wheat grains as the primary substrate raw material. However, this approach is costly and runs counter to the “non-grain” development direction advocated by the edible mushroom industry. Under
[...] Read more.
In the artificial cultivation of Morchella sextelata (Black Morel), exogenous nutrient bags (ENBs) commonly employ wheat grains as the primary substrate raw material. However, this approach is costly and runs counter to the “non-grain” development direction advocated by the edible mushroom industry. Under controlled field conditions, twelve self-made formulations were set up and compared with a conventional market formulation to comprehensively analyze their impacts on the agronomic traits, yield, soil physicochemical properties, and economic benefits of M. sextelata fruiting bodies. The research findings indicate that the nutrient bag formulations have a significant effect on soil available nutrients. Specifically, the contents of alkali-hydrolysable nitrogen (AN) and available potassium (AK) exhibit a significantly negative correlation with M. sextelata yield (r = −0.60, p < 0.05; r = −0.72, p < 0.01, respectively). Among all the treatment groups, the KY1 formulation (comprising 30% wheat grains, 5% rice bran, 60% corncobs, 2% rice husks, 1% lime, and 1% gypsum) achieved the highest yield of 915.13 kg per 667 m2, which was 16.1% higher than that of the control group. The net economic benefit per unit area (667 m2) reached CNY 75,282.15, representing a 20.7% increase compared to the traditional wheat grains-based formulation. In conclusion, partially substituting wheat grains with rice bran in ENBs can not only reduce reliance on staple food resources but also enhance yield and economic efficiency. Due to the differences in cultivated strains and environmental conditions, the impact on morel yield is substantial; therefore, the results of this study need further validation through pilot trials.
Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
Open AccessArticle
Seasonal Variation in Volatile Profiles of Lemon Catnip (Nepeta cataria var. citriodora) Essential Oil and Hydrolate
by
Milica Aćimović, Biljana Lončar, Milica Rat, Mirjana Cvetković, Jovana Stanković Jeremić, Milada Pezo and Lato Pezo
Horticulturae 2025, 11(7), 862; https://doi.org/10.3390/horticulturae11070862 - 21 Jul 2025
Abstract
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks
[...] Read more.
Lemon catnip (Nepeta cataria var. citriodora) is an underutilized aromatic and medicinal plant known for its high essential oil yield and distinctive lemon-like scent, and is widely used in the pharmaceutical, cosmetic, food, and biopesticide industries. Unlike typical catnip, it lacks nepetalactones and is rich in terpene alcohols, such as nerol and geraniol, making it a promising substitute for lemon balm. Despite its diverse applications, little attention has been paid to the valorization of byproducts from essential oil distillation, such as hydrolates and their secondary recovery oils. This study aimed to thoroughly analyze the volatile compound profiles of the essential oil from Lemon catnip and the recovery oil derived from its hydrolate over three consecutive growing seasons, with particular emphasis on how temperature and precipitation influence the major volatile constituents. The essential oil was obtained via semi-industrial steam distillation, producing hydrolate as a byproduct, which was then further processed using a Likens–Nickerson apparatus to extract the recovery oil, also known as secondary oil. Both essential and recovery oils were predominantly composed of terpene alcohols, with nerol (47.5–52.3% in essential oils; 43.5–54.3% in recovery oils) and geraniol (25.2–27.9% in essential oils; 29.4–32.6% in recovery oils) as the primary components. While sesquiterpene hydrocarbons were mostly confined to the essential oil, the recovery oil was distinguished by a higher presence of monooxygenated and more hydrophilic terpenes. Over the three-year period, elevated temperatures led to increased levels of geraniol, geranial, neral, and citronellal in both oils, whereas cooler conditions favored the accumulation of nerol and linalool, especially in the recovery oils. Higher precipitation was associated with elevated concentrations of nerol and linalool but decreased levels of geraniol, geranial, and neral, possibly due to dilution or degradation processes.
Full article
(This article belongs to the Section Medicinals, Herbs, and Specialty Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Effect of Plant Growth Regulators on the Physiological Response and Yield of Cucumis melo var. inodorus Under Different Salinity Levels in a Controlled Environment
by
Dayane Mércia Ribeiro Silva, Francisca Zildélia da Silva, Isabelly Cristina da Silva Marques, Eduardo Santana Aires, Francisco Gilvan Borges Ferreira Freitas Júnior, Fernanda Nery Vargens, Vinicius Alexandre Ávila dos Santos, João Domingos Rodrigues and Elizabeth Orika Ono
Horticulturae 2025, 11(7), 861; https://doi.org/10.3390/horticulturae11070861 - 21 Jul 2025
Abstract
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected
[...] Read more.
The objective of this study was to evaluate the physiological, biochemical, and productive effects of the foliar application of bioregulators, based on auxin, cytokinin, and gibberellic acid, on yellow melon, cultivar DALI®, plants subjected to different salinity levels in a protected environment to simulate Brazil’s semi-arid conditions. The experiment was conducted using a completely randomized block design, in a 4 × 3 factorial scheme, with four salinity levels (0, 2, 4, and 6 dS m−1) and three doses of the bioregulator, Stimulate® (0%, 100%, and 150% of the recommended dose), with six weekly applications. The physiological variables (chlorophyll a fluorescence and gas exchange) and biochemical parameters (antioxidant enzyme activity and lipid peroxidation) were evaluated at 28 and 42 days after transplanting, and the agronomic traits (fresh fruit mass, physical attributes, and post-harvest quality) were evaluated at the end of the experiment. The results indicated that salinity impaired the physiological and productive performance of the plants, especially at higher levels (4 and 6 dS m−1), causing oxidative stress, reduced photosynthesis, and decreased yield. However, the application of the bioregulator at the 100% dose mitigated the effects of salt stress under moderate salinity (2 dS m−1), promoting higher CO2 assimilation rates of up to 31.5%, better water-use efficiency, and reduced lipid peroxidation. In addition, the fruits showed a greater mass of up to 66%, thicker pulp, and higher soluble solids (> 10 °Brix) content, making them suitable for sale in the market. The 150% dose did not provide additional benefits and, in some cases, resulted in inhibitory effects. It is concluded that the application of Stimulate® at the recommended dose is effective in mitigating the effects of moderate salinity, up to ~3 dS m−1, in yellow melon crops; however, its effectiveness is limited under high salinity conditions, requiring the use of complementary strategies.
Full article
(This article belongs to the Section Protected Culture)
►▼
Show Figures

Figure 1
Open AccessArticle
Functional Analysis of Penicillium expansum Glucose Oxidase-Encoding Gene, GOX2, and Its Expression Responses to Multiple Environmental Factors
by
Yongcheng Yuan, Yutong Ru, Xiaohe Yuan, Shuqi Huang, Dan Yuan, Maorun Fu and Wenxiao Jiao
Horticulturae 2025, 11(7), 860; https://doi.org/10.3390/horticulturae11070860 - 21 Jul 2025
Abstract
Penicillium expansum is an acidogenic fungal species that belongs to the phylum Ascomycota. During the infection and colonization of host fruits, P. expansum can efficiently express glucose oxidase (GOX) and oxidize β-D-glucose to generate gluconic acid (GLA). In this study, the bioinformatics analysis
[...] Read more.
Penicillium expansum is an acidogenic fungal species that belongs to the phylum Ascomycota. During the infection and colonization of host fruits, P. expansum can efficiently express glucose oxidase (GOX) and oxidize β-D-glucose to generate gluconic acid (GLA). In this study, the bioinformatics analysis method was employed to predict and analyze the function of the GOX protein. In addition, a comprehensive assessment was conducted on the P. expansum GOX coding gene GOX2, and the expression response rules of GOX2 under different external stress environments were explored. The results show that GOX is an unstable hydrophilic protein. It is either an integrated membrane protein (such as a receptor or channel) that is directly anchored to the membrane through a transmembrane structure or a non-classical secreted protein that is secreted extracellularly. RNA-seq data analysis shows that the GOX2 gene is regulated by multiple environmental factors, including pH, temperature, carbon base, and chemical fungicides. The expression level of GOX2 reaches its maximum value under alkaline conditions (pH 8–10) and at approximately 10 °C. Using starch as the carbon source and adding sodium propionate or potassium sorbate has the effect of inhibiting the expression of the GOX2 gene. The analysis of the function of the GOX protein and the characteristics of the GOX2 gene in P. expansum provides new insights into the glucose oxidase-encoding gene GOX2. The research results provide significant value for the subsequent development of new disease resistance strategies by targeting the GOX2 gene and reducing post-harvest disease losses in fruits.
Full article
(This article belongs to the Special Issue Advances in Postharvest Preservation and Quality of Fruits and Vegetables)
►▼
Show Figures

Figure 1
Open AccessArticle
Impact of Reduced Chemical Fertilizer and Organic Amendments on Yield, Nitrogen Use Efficiency, and Soil Microbial Dynamics in Chinese Flowering Cabbage
by
Jiaxin Xu, Jianshe Li, Xia Zhao, Zhen Liu, Hao Xu, Kai Cao and Lin Ye
Horticulturae 2025, 11(7), 859; https://doi.org/10.3390/horticulturae11070859 - 21 Jul 2025
Abstract
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify
[...] Read more.
(1) Background: The escalating issue of soil degradation caused by excessive chemical fertilizer application poses significant threats to the sustainable development of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis (L.) var. utilis Tsen et Lee) production. This research aimed to identify the impacts of reduced chemical fertilizer application integrated with organic amendments on cabbage yield and rhizosphere soil microenvironment characteristics. (2) Methods: A biennial field experiment was conducted during the 2022–2023 growing seasons at Lijun Town, Yinchuan City, Ningxia Hui Autonomous Region. Five treatments were tested: (i) Control (CK, no fertilizer); (ii) Conventional chemical fertilization (CF1, chemical fertilizer only); (iii) Reduced chemical fertilization (CF2, 30% less chemical fertilizer); (iv) CF2 + Well-decomposed chicken manure (FCM, 30% less chemical fertilizer + rotted chicken manure); and (v) CF2 + Vermicompost (FEM, 30% less chemical fertilizer + vermicompost). (3) Results: In 2023, the FCM treatment reduced electrical conductivity (EC) by 24.80% and pH by 2.16%, while the FEM treatment decreased EC by 31.13% and pH by 3.84% compared to controls. The FEM treatment significantly enhanced total nitrogen content by 12.71% and 8.85% relative to CF1 and FCM treatments, respectively. Compared to CF1, FEM increased soil organic matter content by 10.49% in 2022 and 11.24% in 2023. Organic fertilizer amendments elevated available nitrogen, phosphorus, and potassium levels while enhancing sucrase activity: FCM and FEM treatments increased sucrase activity by 23.62% and 32.00%, respectively, in 2022. Organic fertilization improved bacterial diversity and richness, optimized microbial community structure, and increased the relative abundance of Bacillus. It also upregulated microbial metabolic pathways related to carbohydrate and amino acid metabolism. Soil nutrients and bacterial community structure showed positive correlations with yield, whereas soil enzyme activities exhibited negative correlations. Key factors influencing yield were identified as Proteobacteria, Chloroflexi, available potassium, organic matter, available nitrogen, Actinobacteria, Firmicutes, total nitrogen, pH, and sucrase activity. (4) Conclusions: Integrated analysis of yield and soil microenvironmental parameters demonstrates that the fertilization regimen combining 30% chemical fertilizer reduction with vermicompost amendment (FEM) constitutes a more efficient fertilization strategy for Chinese flowering cabbage, making it suitable for regional promotion in the Ningxia area.
Full article
(This article belongs to the Section Plant Nutrition)
►▼
Show Figures

Figure 1
Open AccessArticle
YOLO11m-SCFPose: An Improved Detection Framework for Keypoint Extraction in Cucumber Fruit Phenotyping
by
Huijiao Yu, Xuehui Zhang, Jun Yan and Xianyong Meng
Horticulturae 2025, 11(7), 858; https://doi.org/10.3390/horticulturae11070858 - 20 Jul 2025
Abstract
To address the issues of low efficiency and large errors in traditional manual cucumber fruit phenotyping methods, this paper proposes the application of keypoint detection technology for cucumber phenotyping and designs an improved lightweight model called YOLO11m-SCFPose. Based on YOLO11m-pose, the original backbone
[...] Read more.
To address the issues of low efficiency and large errors in traditional manual cucumber fruit phenotyping methods, this paper proposes the application of keypoint detection technology for cucumber phenotyping and designs an improved lightweight model called YOLO11m-SCFPose. Based on YOLO11m-pose, the original backbone network is replaced with the lightweight StarNet-S1 backbone, reducing model complexity. Additionally, an improved C3K2_PartialConv neck module is used to enhance information interaction and fusion among multi-scale features while maintaining computational efficiency. The Focaler-IoU loss function is employed to improve keypoint localization accuracy. Results show that the improved model achieves an mAP50-95 of 0.924, with a floating-point operation count (GFLOPs) of 32.1, and reduces the model size to 1.229 × 107 parameters. This model demonstrates better computational efficiency and lower resource consumption, providing an effective lightweight solution for crop phenotypic analysis.
Full article
(This article belongs to the Section Vegetable Production Systems)
►▼
Show Figures

Figure 1
Open AccessArticle
Nitric Oxide Modulates Postharvest Physiology to Maintain Abelmoschus esculentus Quality Under Cold Storage
by
Xianjun Chen, Fenghuang Mo, Ying Long, Xiaofeng Liu, Yao Jiang, Jianwei Zhang, Cheng Zhong, Qin Yang and Huiying Liu
Horticulturae 2025, 11(7), 857; https://doi.org/10.3390/horticulturae11070857 - 20 Jul 2025
Abstract
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as
[...] Read more.
Cold storage is widely used for the postharvest preservation of fruits and vegetables; however, okra, as a tropical vegetable, is susceptible to chilling injury under low-temperature storage conditions, leading to quality deterioration, reduced nutritional value, and significant economic losses. Nitric oxide (NO), as an important signaling molecule, plays a crucial role in the postharvest preservation of fruits and vegetables. To investigate the effects of different concentrations of nitric oxide on the postharvest quality of okra under cold storage, fresh okra pods were treated with sodium nitroprusside (SNP), a commonly used NO donor, at concentrations of 0 (control), 0.5 (T1), 1.0 (T2), 1.5 (T3), and 2.0 mmol·L−1 (T4). The results showed that low-concentration NO treatment (T1) significantly reduced weight loss, improved texture attributes including hardness, springiness, chewiness, resilience, and cohesiveness, and suppressed the increase in adhesiveness. T1 treatment also effectively inhibited excessive accumulation of cellulose and lignin, thereby maintaining tissue palatability and structural integrity. Additionally, T1 significantly delayed chlorophyll degradation, preserved higher levels of soluble sugars and proteins, and enhanced the activities of key antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), contributing to improved oxidative stress resistance and membrane stability. In contrast, high-concentration NO treatments (T3 and T4) led to pronounced quality deterioration, characterized by accelerated membrane lipid peroxidation as evidenced by increased malondialdehyde (MDA) content and relative conductivity, and impaired antioxidant defense, resulting in rapid texture degradation, chlorophyll loss, nutrient depletion, and oxidative damage. These findings provide theoretical insights and practical guidance for the precise application of NO in extending shelf life and maintaining the postharvest quality of okra fruits.
Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
►▼
Show Figures

Figure 1
Open AccessArticle
Mitigating Water Stress and Enhancing Aesthetic Quality in Off-Season Potted Curcuma cv. ‘Jasmine Pink’ via Potassium Silicate Under Deficit Irrigation
by
Vannak Sour, Anoma Dongsansuk, Supat Isarangkool Na Ayutthaya, Soraya Ruamrungsri and Panupon Hongpakdee
Horticulturae 2025, 11(7), 856; https://doi.org/10.3390/horticulturae11070856 - 20 Jul 2025
Abstract
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality
[...] Read more.
Curcuma spp. is a popular ornamental crop valued for its vibrant appearance and suitability for both regular and off-season production. As global emphasis on freshwater conservation increases and with a demand for compact potted plants, reducing water use while maintaining high aesthetic quality presents a key challenge for horticulturists. Potassium silicate (PS) has been proposed as a foliar spray to alleviate plant water stress. This study aimed to evaluate the effects of PS on growth, ornamental traits, and photosynthetic parameters of off-season potted Curcuma cv. ‘Jasmine Pink’ under deficit irrigation (DI). Plants were subjected to three treatments in a completely randomized design: 100% crop evapotranspiration (ETc), 50% ETc, and 50% ETc with 1000 ppm PS (weekly sprayed on leaves for 11 weeks). Both DI treatments (50% ETc and 50% ETc + PS) reduced plant height by 7.39% and 9.17%, leaf number by 16.99% and 7.03%, and total biomass by 21.13% and 20.58%, respectively, compared to 100% ETc. Notably, under DI, PS-treated plants maintained several parameters equivalent to the 100% ETc treatment, including flower bud emergence, blooming period, green bract number, effective quantum yield of PSII (ΔF/Fm′), and electron transport rate (ETR). In addition, PS application increased leaf area by 8.11% and compactness index by 9.80% relative to untreated plants. Photosynthetic rate, ΔF/Fm′, and ETR increased by 31.52%, 13.63%, and 9.93%, while non-photochemical quenching decreased by 16.51% under water-limited conditions. These findings demonstrate that integrating deficit irrigation with PS foliar application can enhance water use efficiency and maintain ornamental quality in off-season potted Curcuma, promoting sustainable water management in horticulture.
Full article
(This article belongs to the Topic Optimizing Plants and Cultivation System for Controlled Environment Agriculture (CEA))
►▼
Show Figures

Figure 1
Open AccessArticle
Characterization of the Salt Overly Sensitive 1 (SOS1) Pathway Genes in Tea Plant (Cameliia sinensis) Under Environmental Stress
by
Shunkai Hu, Peishuo Jiang and Qirong Guo
Horticulturae 2025, 11(7), 855; https://doi.org/10.3390/horticulturae11070855 - 20 Jul 2025
Abstract
Soil salinization poses a significant threat to tea plant (Camellia sinensis) production by compromising its bioactive compounds, such as polyphenols, L-theanine, and caffeine, which are key contributors to the plant’s health benefits and economic value. This study investigates the Salt Overly
[...] Read more.
Soil salinization poses a significant threat to tea plant (Camellia sinensis) production by compromising its bioactive compounds, such as polyphenols, L-theanine, and caffeine, which are key contributors to the plant’s health benefits and economic value. This study investigates the Salt Overly Sensitive 1 (SOS1) gene family, a critical salt-tolerance regulator in tea plants, to elucidate its role in maintaining quality under environmental stress. Genome-wide analysis identified 51 CsSOS1 genes, with phylogenetic and synteny analyses revealing strong evolutionary conservation with Populus trichocarpa and Arabidopsis thaliana. Promoter analysis detected stress- and hormone-responsive cis-elements, indicating adaptive functions in abiotic stress. Expression profiling demonstrated tissue-specific patterns, highlighting significant upregulation of CsSOS1-15 and CsSOS1-41 under salt and drought stress. Co-expression network analysis further linked CsSOS1 genes to carbohydrate metabolism, implicating their roles in stress resilience and secondary metabolite synthesis. Our findings provide molecular insights into CsSOS1-mediated salt tolerance, proposing potential targets for preserving bioactive compounds. This work facilitates developing salt-resistant tea plant cultivars to ensure sustainable production and quality stability amid environmental challenges.
Full article
(This article belongs to the Section Biotic and Abiotic Stress)
►▼
Show Figures

Figure 1
Open AccessArticle
Genetic Differentiation of Ornamental and Fruit-Bearing Prunus laurocerasus Revealed by SSR and S-Locus Markers
by
Attila Hegedűs, Péter Honfi, Sezai Ercisli, Gulce Ilhan, Endre György Tóth and Júlia Halász
Horticulturae 2025, 11(7), 854; https://doi.org/10.3390/horticulturae11070854 - 19 Jul 2025
Abstract
Cherry laurel (Prunus laurocerasus) is an understudied, highly polyploid (22×) species that is widely used as an ornamental shrub and as a fruit-bearing plant in Türkiye. We analyzed 43 accessions—33 ornamental cultivars and 10 fruit-bearing selections—by examining size variations in 10
[...] Read more.
Cherry laurel (Prunus laurocerasus) is an understudied, highly polyploid (22×) species that is widely used as an ornamental shrub and as a fruit-bearing plant in Türkiye. We analyzed 43 accessions—33 ornamental cultivars and 10 fruit-bearing selections—by examining size variations in 10 simple sequence repeat (SSR) markers and the first intron region of the self-incompatibility ribonuclease (S-RNase) gene. A total of 498 alleles were detected across 11 loci, with the highest number of alleles observed at the S-locus. The SSR loci amplified between 4 (ASSR63) and 17 (BPPCT039) alleles per accession, with eight of the 11 primers generating more than 12 alleles per accession. Two markers, BPPCT040 and CPSCT021, uniquely distinguished all tested accessions. Of the alleles, only 178 (36%) were shared between the ornamental and fruit-bearing groups, reflecting significant genetic differentiation. A dendrogram and principal coordinate analysis revealed three distinct groups. Group 1 included most Hungarian and some European cultivars. Groups 2 (Western European cultivars) and 3 (Turkish selections) exhibited higher average allele numbers, suggesting greater genetic diversity in these groups. Our results indicate that cultivated cherry laurels originate from a broad genetic base and show clear genetic divergence between ornamental and fruit-bearing selections, likely due to differing long-term selection pressures. The observed genetic variability is consistent with the polyploid nature of the species and supports the presumed self-incompatible phenotype. This is the first study to report SSR fingerprints for ornamental cultivars and fruit-bearing selections, providing a potential tool for use in breeding programs.
Full article
(This article belongs to the Special Issue Breeding of Ornamental Plants—Genetic Resources, New Challenges and Prospects: 2nd Edition)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Amino Acid Biostimulants Enhance Drought and Heat Stress Tolerance of Creeping Bentgrass (Agrostis Stolonifera L.)
by
Xunzhong Zhang, Mike Goatley, Maude Focke, Graham Sherman, Berit Smith, Taylor Motsinger, Catherine Roué and Jay Goos
Horticulturae 2025, 11(7), 853; https://doi.org/10.3390/horticulturae11070853 - 19 Jul 2025
Abstract
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species widely used for golf course putting greens; however, it experiences a summer stress-induced quality decline in the U.S. transition zone and other regions with similar climates. The objective of this study
[...] Read more.
Creeping bentgrass (Agrostis stolonifera L.) is an important cool-season turfgrass species widely used for golf course putting greens; however, it experiences a summer stress-induced quality decline in the U.S. transition zone and other regions with similar climates. The objective of this study was to determine the effects of five amino acid biostimulants on creeping bentgrass drought and heat stress tolerance. The five biostimulants, including Superbia, Amino Pro V, Siapton, Benvireo, and Surety, at the rate of 0.22 g of N m−2, were applied biweekly to foliage, and the treatments were arranged in a randomized block design with four replications and were subjected to 56 days of heat and drought stress in growth chamber conditions. The amino acid biostimulants Superbia and Amino Pro V improved the turf quality, photochemical efficiency (PE), normalized difference vegetation index (NDVI), chlorophyll content, antioxidant enzyme superoxide dismutase activity, root growth, and viability and suppressed leaf H2O2 levels when compared to a control. Among the treatments, Superbia and Amino Pro V exhibited greater beneficial effects on turf quality and physiological fitness. The results of this study suggest that foliar application of amino acid biostimulants may improve the summer stress tolerance of cool-season turfgrass species in the U.S. transition zone and other regions with similar climates.
Full article
(This article belongs to the Topic Biostimulants in Agriculture—2nd Edition)
Open AccessArticle
Morphological Analysis, Bud Differentiation, and Regulation of “Bud Jumping” Phenomenon in Oncidium Using Plant Growth Regulators
by
Hanqiao Lan, Le Liu, Weishi Li, Daicheng Hao, Shanzhi Lin, Beilei Ye, Minqiang Tang and Peng Ling
Horticulturae 2025, 11(7), 852; https://doi.org/10.3390/horticulturae11070852 - 18 Jul 2025
Abstract
Oncidium has an important market value, with important high-grade cut orchids and potted flowers on the flower market. In the Oncidium cut flowers production industry, there is a common phenomenon that the development of vegetative buds disrupts the normal generation cycle of the
[...] Read more.
Oncidium has an important market value, with important high-grade cut orchids and potted flowers on the flower market. In the Oncidium cut flowers production industry, there is a common phenomenon that the development of vegetative buds disrupts the normal generation cycle of the inflorescence induction, so-called “bud jumping”. In this study, vegetative bud differentiation and flower bud differentiation were divided into three stages, namely, the initial stage of differentiation, the leaf primordial/flower primordial differentiation stage, and the late stage of leaf bud/flower bud differentiation, as observed by paraffin sectioning. Secondly, we analyzed the differences between the vegetative buds of “bud jumping” plants and the flower buds of normal flowering plants by transcriptome sequencing. The transcriptome analysis results revealed significant differences among plant signaling pathways, particularly in gibberellins, auxins, and cytokinins, which play important roles in this phenomenon’s formation. In conjunction with the transcriptome analysis, the researchers conducted field experiments by applying plant growth regulators on the newborn pseudobulb of young Oncidium plants measuring approximately 49 mm in length. The results showed that the treatment groups of 100 mg/L of gibberellic acid (GA3) and 100 mg/L GA3 + 10 mg/L 6-Benziladenine (6-BA) exhibited the highest rate of flower bud differentiation instead of the least “bud jumping” phenomenon, and the “bud jumping” phenomenon was significantly reduced under 25 mg/L, 50 mg/L, and 75 mg/L 3-indoleacetic acid (IAA) treatments. The application of exogenous gibberellins, cytokinins, and auxins can effectively reduce the occurrence of “bud jumping”.
Full article
(This article belongs to the Section Developmental Physiology, Biochemistry, and Molecular Biology)
►▼
Show Figures

Figure 1
Open AccessArticle
Effects of Crop Load Management on Berry and Wine Composition of Marselan Grapes
by
Jianrong Kai, Jing Zhang, Caiyan Wang, Fang Wang, Xiangyu Sun, Tingting Ma, Qian Ge and Zehua Xu
Horticulturae 2025, 11(7), 851; https://doi.org/10.3390/horticulturae11070851 - 18 Jul 2025
Abstract
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the
[...] Read more.
The aim of this study was to investigate the effects of the crop load on the berry and wine composition of Marselan grapes. Thus, the appropriate crop load for Marselan wine grapes in Ningxia was determined based on the shoot density and the number of clusters per shoot. Marselan grapes from the Gezi Mountain vineyard, located at the eastern foot of Helan Mountain in the Qingtongxia region of Ningxia, were selected as the research material to conduct a combination experiment with four levels of shoot density and three levels of cluster density. The analysis of the berry and wine chemical composition was combined with a wine sensory evaluation to determine the optimal crop load levels. Crop load regulation significantly affected both the grape berry composition and the basic physicochemical properties of the resulting wine. Low crop loads improved metrics such as the berry weight and soluble solids content. A low shoot density facilitated the accumulation of organic acids, flavonols, and hydroxybenzoic acids in wine. Moderate crop loads were conducive to anthocyanin synthesis—the total individual anthocyanins content in the 10–20 shoots per meter of the canopy treatment group ranged from 116% to 490% of the control group—whereas excessive crop loads hindered its accumulation. Crop load management significantly influenced the aroma composition of wine by regulating the content of sugars, nitrogen sources, and organic acids in grape berries, thereby promoting the synthesis of esters and the accumulation of key aromatic compounds, such as terpenes. This process optimized pleasant flavors, including fruity and floral aromas. In contrast, wines from the high crop load and control treatments contained lower levels of these aroma compounds. Compounds such as ethyl caprylate and β-damascenone were identified as potential quality markers. Overall, the wine produced from vines with a crop load of 30 clusters (15 shoots per meter of canopy, 2 clusters per shoot) received the highest sensory scores. Appropriate crop load management is therefore critical to improving the chemical composition of Marselan wine.
Full article
(This article belongs to the Section Viticulture)
►▼
Show Figures

Figure 1
Open AccessArticle
The Physiological Mechanism of Arbuscular Mycorrhizal in Regulating the Growth of Trifoliate Orange (Poncirus trifoliata L. Raf.) Under Low-Temperature Stress
by
Changlin Li, Xian Pei, Qiaofeng Yang, Fuyuan Su, Chuanwu Yao, Hua Zhang, Zaihu Pang, Zhonghua Yao, Dejian Zhang and Yan Wang
Horticulturae 2025, 11(7), 850; https://doi.org/10.3390/horticulturae11070850 - 18 Jul 2025
Abstract
In recent years, low temperature has seriously threatened the citrus industry. Arbuscular mycorrhizal fungi (AMF) can enhance the absorption of nutrients and water and tolerance to abiotic stresses. In this study, pot experiments were conducted to study the effects of low-temperature stress on
[...] Read more.
In recent years, low temperature has seriously threatened the citrus industry. Arbuscular mycorrhizal fungi (AMF) can enhance the absorption of nutrients and water and tolerance to abiotic stresses. In this study, pot experiments were conducted to study the effects of low-temperature stress on citrus (trifoliate orange, Poncirus trifoliata L. Raf.) with AMF (Diversispora epigaea D.e). The results showed that AMF inoculation significantly increased plant growth, chlorophyll fluorescence, and photosynthetic parameters. Compared with 25 °C, −5 °C significantly increased the relative conductance rate and the contents of malondialdehyde, hydrogen peroxide, soluble sugar soluble protein, and proline, and also enhanced the activities of catalase and superoxide dismutase, but dramatically reduced photosynthetic parameters. Compared with the non-AMF group, AMF significantly increased the maximum light quantum efficiency and steady-state light quantum efficiency at 25 °C (by 16.67% and 61.54%), and increased the same parameters by 71.43% and 140% at −5 °C. AMF also significantly increased the leaf net photosynthetic rate and transpiration rate at 25 °C (by 54.76% and 29.23%), and increased the same parameters by 72.97% and 26.67% at −5 °C. Compared with the non-AMF treatment, the AMF treatment significantly reduced malondialdehyde and hydrogen peroxide content at 25 °C (by 46.55% and 41.29%), and reduced them by 28.21% and 29.29% at −5 °C. In addition, AMF significantly increased the contents of soluble sugar, soluble protein, and proline at 25 °C (by 15.22%, 34.38%, and 11.38%), but these increased by only 9.64%, 0.47%, and 6.09% at −5 °C. Furthermore, AMF increased the activities of superoxide dismutase and catalase at 25 °C (by 13.33% and 13.72%), but these increased by only 5.51% and 13.46% at −5 °C. In conclusion, AMF can promote the growth of the aboveground and underground parts of trifoliate orange seedlings and enhance their resistance to low temperature via photosynthesis, osmoregulatory substances, and their antioxidant system.
Full article
(This article belongs to the Special Issue Horticultural Crops against Abiotic Stresses: Adaptation Skills and Agronomic Strategies)
►▼
Show Figures

Figure 1
Open AccessFeature PaperArticle
Deficit Irrigation and Nitrogen Application Rate Influence Growth and Yield of Four Potato Cultivars (Solanum tuberosum L.)
by
Abdulssamad M. H. Barka, Samuel Y. C. Essah and Jessica G. Davis
Horticulturae 2025, 11(7), 849; https://doi.org/10.3390/horticulturae11070849 - 18 Jul 2025
Abstract
Potatoes have high nitrogen (N) and irrigation requirements. Increasing water scarcity and environmental concerns highlight the need for efficient resource management. This study evaluated the effects of deficit irrigation and reduced N on yield and growth parameters in four potato cultivars (Canela Russet,
[...] Read more.
Potatoes have high nitrogen (N) and irrigation requirements. Increasing water scarcity and environmental concerns highlight the need for efficient resource management. This study evaluated the effects of deficit irrigation and reduced N on yield and growth parameters in four potato cultivars (Canela Russet, Mesa Russet, Russet Norkotah3, and Yukon Gold) at Colorado State University’s San Luis Valley Research Center over two growing seasons. Three irrigation levels (~70%, ~80%, and 100% ET replacement) and two N rates (165 and 131 kg/ha) were evaluated. Measurements included total and marketable yield, tuber size distribution, tuber bulking (TB), leaf area index (LAI), and stem and tuber numbers. Yield losses were absent with ≤18% irrigation reduction in Canela Russet, Mesa Russet, or Yukon Gold but occurred with larger deficits. Russet Norkotah3 experienced yield decline with 16–23% reductions in irrigation. A twenty percent reduction in N application had no effect on Mesa Russet or Russet Norkotah3 yields, while the other varieties experienced a yield decline in one out of two years. Early-season LAI and late-season TB were positively correlated with yield, particularly for Canela Russet and Russet Norkotah3. These findings suggest irrigation and N inputs can be reduced without compromising productivity, but reductions must be determined on a cultivar-by-cultivar basis.
Full article
(This article belongs to the Special Issue Advances in Sustainable Cultivation of Horticultural Crops)
►▼
Show Figures

Figure 1
Open AccessArticle
Genome-Wide Identification and Analysis of the CCT Gene Family Contributing to Photoperiodic Flowering in Chinese Cabbage (Brassica rapa L. ssp. pekinensis)
by
Wei Fu, Xinyu Jia, Shanyu Li, Yang Zhou, Xinjie Zhang, Lisi Jiang and Lin Hao
Horticulturae 2025, 11(7), 848; https://doi.org/10.3390/horticulturae11070848 - 17 Jul 2025
Abstract
Photoperiod sensitivity significantly affects the reproductive process of plants. The CONSTANS, CONSTANS-LIKE, and TOC1 (CCT) genes play pivotal roles in photoperiod sensitivity and regulating flowering time. However, the function of the CCT gene in regulating flowering varies among different species.
[...] Read more.
Photoperiod sensitivity significantly affects the reproductive process of plants. The CONSTANS, CONSTANS-LIKE, and TOC1 (CCT) genes play pivotal roles in photoperiod sensitivity and regulating flowering time. However, the function of the CCT gene in regulating flowering varies among different species. Further research is needed to determine whether it promotes or delays flowering under long-day (LD) or short-day (SD) conditions. CCT MOTIF FAMILY (CMF) belongs to one of the three subfamilies of the CCT gene and has been proven to be involved in the regulation of circadian rhythms and flowering time in cereal crops. In this study, 60 CCT genes in Chinese cabbage were genome-wide identified, and chromosomal localization, gene duplication events, gene structure, conserved domains, co-expression networks, and phylogenetic tree were analyzed by bioinformatics methods. The specific expression patterns of the BrCMF gene in different tissues, as well as the transcriptome and RT-qPCR results under different photoperiodic conditions, were further analyzed. The results showed that BrCMF11 was significantly upregulated in ebm5 under LD conditions, suggesting that BrCMF11 promoted flowering under LD conditions in Chinese cabbage. These findings revealed the function of the BrCCT gene family in photoperiod flowering regulation and provided a prominent theoretical foundation for molecular breeding in Chinese cabbage.
Full article
(This article belongs to the Special Issue Optimized Light Management in Controlled-Environment Horticulture)
►▼
Show Figures

Figure 1

Journal Menu
► ▼ Journal Menu-
- Horticulturae Home
- Aims & Scope
- Editorial Board
- Reviewer Board
- Topical Advisory Panel
- Instructions for Authors
- Special Issues
- Topics
- Sections & Collections
- Article Processing Charge
- Indexing & Archiving
- Editor’s Choice Articles
- Most Cited & Viewed
- Journal Statistics
- Journal History
- Journal Awards
- Society Collaborations
- Conferences
- Editorial Office
- 10th Anniversary
Journal Browser
► ▼ Journal BrowserHighly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Antioxidants, Horticulturae, Plants
Recent Progress in Plant Nutrition Research and Plant Physiology
Topic Editors: Renato De Mello Prado, Cid Naudi Silva CamposDeadline: 30 September 2025
Topic in
Agriculture, Agronomy, Analytica, Horticulturae, IJPB, Plants, Earth, Agrochemicals
Biostimulants in Agriculture—2nd Edition
Topic Editors: Manuel Ângelo Rosa Rodrigues, Paolo Carletti, Domenico RongaDeadline: 30 October 2025
Topic in
Agriculture, Agronomy, Gastronomy, Grasses, Sustainability, Diversity, Horticulturae, Hydrobiology
Mediterranean Biodiversity, 2nd Edition
Topic Editors: Luigi De Bellis, Massimiliano Renna, Pietro Buzzini, Ignasi TorreDeadline: 15 December 2025
Topic in
Agriculture, Agronomy, Horticulturae, IJPB, Plants
Tolerance to Drought and Salt Stress in Plants, 2nd volume
Topic Editors: Roberto Barbato, Veronica De MiccoDeadline: 31 December 2025

Conferences
Special Issues
Special Issue in
Horticulturae
Phytochemicals Compounds as Alternative for Insect and Mites Pest Management in Horticultural Crops
Guest Editors: Miguel Angel Ramos-López, Lourdes Soto-Muñoz, Rodolfo Figueroa BritoDeadline: 25 July 2025
Special Issue in
Horticulturae
Advanced Postharvest Technology in Processed Horticultural Products
Guest Editors: Wenzhong Hu, Chen Chen, Ke FengDeadline: 25 July 2025
Special Issue in
Horticulturae
Pre/Post-harvest Treatments to Improve Quality and Longevity of Cut Flowers
Guest Editors: Anastasios Darras, Suong Tuyet Thi HaDeadline: 25 July 2025
Special Issue in
Horticulturae
Nutrition Management and Weed Management Strategies in Horticultural Plants
Guest Editors: Nebojša Nikolić, Marco Sozzi, Giampaolo ZaninDeadline: 30 July 2025
Topical Collections
Topical Collection in
Horticulturae
Soil Microorganisms and Soil Health in Horticultural Crop Production
Collection Editors: Wilfried Rozhon, Jörg Geistlinger
Topical Collection in
Horticulturae
Nutritive Value, Polyphenolic Content, and Bioactive Constitution of Green, Red and Flowering Plants-Volume II
Collection Editor: Christophe El-Nakhel
Topical Collection in
Horticulturae
Biosaline Agriculture
Collection Editors: Antonella Castagna, Marco Santin
Topical Collection in
Horticulturae
The State-of-the-Art Propagation and Breeding Techniques for Horticulture Crops
Collection Editor: Sergio Ruffo Roberto