-
Minireview: Intensified Low-Temperature Fischer–Tropsch Reactors for Sustainable Fuel Production
-
Fuel Pelletization of Digestate: A Pathway to Renewable and Sustainable Energy Sources
-
Experimental and Aspen Simulation Study of the Co-Pyrolysis of Refuse-Derived Fuel and Oil Shale: Product Yields and Char Characterization
-
Research on the Combustion of Mixed Biomass Pellets in a Domestic Boiler
Journal Description
Fuels
Fuels
is an international, peer-reviewed, open access journal on fuel science, published quarterly online by MDPI. The Institute of Energy and Fuel Processing Technology (ITPE) is affiliated to Fuels and their members receive a discount on the article processing charges.
- Open Access— free for readers, with article processing charges (APC) paid by authors or their institutions.
- High Visibility: indexed within ESCI (Web of Science), EBSCO, Ei Compendex, and other databases.
- Rapid Publication: manuscripts are peer-reviewed and a first decision is provided to authors approximately 24.7 days after submission; acceptance to publication is undertaken in 8.8 days (median values for papers published in this journal in the first half of 2025).
- Recognition of Reviewers: APC discount vouchers, optional signed peer review, and reviewer names published annually in the journal.
Impact Factor:
2.8 (2024);
5-Year Impact Factor:
3.1 (2024)
Latest Articles
Mitigating Microbial Artifacts in Laboratory Research on Underground Hydrogen Storage
Fuels 2025, 6(3), 52; https://doi.org/10.3390/fuels6030052 (registering DOI) - 1 Jul 2025
Abstract
►
Show Figures
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged
[...] Read more.
The global energy sector is aiming to substantially reduce CO2 emissions to meet the UN climate goals. Among the proposed strategies, underground storage solutions such as radioactive disposal, CO2, NH3, and underground H2 storage (UHS) have emerged as promising options for mitigating anthropogenic emissions. These approaches require rigorous research and development (R&D), often involving laboratory-scale experiments to establish their feasibility before being scaled up to pilot plant operations. Microorganisms, which are ubiquitous in laboratory environments, can significantly influence geochemical reactions under variable experimental conditions of porous media and a salt cavern. We have selected a consortium composed of Bacillus sp., Enterobacter sp., and Cronobacter sp. bacteria, which are typically present in the laboratory environment. These microorganisms can contaminate the rock sample and develop experimental artifacts in UHS experiments. Hence, it is pivotal to sterilize the rock prior to conduct experimental research related to effects of microorganisms in the porous media and the salt cavern for the investigation of UHS. This study investigated the efficacy of various disinfection and sterilization methods, including ultraviolet irradiation, autoclaving, oven heating, ethanol treatments, and gamma irradiation, in removing the microorganisms from silica sand. Additionally, the consideration of their effects on mineral properties are reviewed. A total of 567 vials, each filled with 9 mL of acid-producing bacteria (APB) media were used to test killing efficacy of the cleaning methods. We conducted serial dilutions up to 10−8 and repeated them three times to determine whether any deviation occurred. Our findings revealed that gamma irradiation and autoclaving were the most effective techniques for eradicating microbial contaminants, achieving sterilization without significantly altering the mineral characteristics. These findings underscore the necessity of robust cleaning protocols in hydrogeochemical research to ensure reliable, reproducible data, particularly in future studies where microbial contamination could induce artifacts in laboratory research.
Full article
Open AccessArticle
The Comprehensive Quantification and Characterization of Oak Biochar Produced via a Gasification Process Using a Downdraft Reactor
by
Paul C. Ani, Hayder Alhameedi, Hasan J. Al-Abedi, Haider Al-Rubaye, Zeyad Zeitoun, Ugochukwu Ewuzie and Joseph D. Smith
Fuels 2025, 6(3), 51; https://doi.org/10.3390/fuels6030051 - 1 Jul 2025
Abstract
►▼
Show Figures
This study presents a comprehensive characterization of oak biochar produced via downdraft gasification at 850 °C. The research employs a wide range of advanced analytical techniques to examine the biochar’s physical, chemical, and structural properties. Scanning electron microscopy (SEM) revealed a mesoporous structure,
[...] Read more.
This study presents a comprehensive characterization of oak biochar produced via downdraft gasification at 850 °C. The research employs a wide range of advanced analytical techniques to examine the biochar’s physical, chemical, and structural properties. Scanning electron microscopy (SEM) revealed a mesoporous structure, while Brunauer–Emmett–Teller (BET) analysis showed a surface area of 88.97 m2/g. Thermogravimetric analysis (TGA) demonstrated high thermal stability and carbon content (78.7%). X-ray photoelectron spectroscopy (XPS) and ultimate analysis confirmed the high degree of carbonization, with low O/C (0.178) and H/C (0.368) ratios indicating high aromaticity. Fourier transform infrared spectroscopy (FTIR) identified functional groups suggesting potential for CO2 adsorption. The biochar exhibited a negative zeta potential (−31.5 mV), indicating colloidal stability and potential for soil amendment applications. X-ray diffraction (XRD) and Raman spectroscopy provided insights into the biochar’s crystalline structure and graphitization degree. These findings highlight the oak biochar’s suitability for diverse applications, including soil improvement, carbon sequestration, and environmental remediation. By filling knowledge gaps in oak-specific biochar research, this study underscores the benefits of optimized downdraft gasification and sets a foundation for future advancements in sustainable biochar applications.
Full article

Figure 1
Open AccessArticle
Environmentally Sustainable and Energy-Efficient Nanobubble Engineering: Applications in the Oil and Fuels Sector
by
Niall J. English
Fuels 2025, 6(3), 50; https://doi.org/10.3390/fuels6030050 - 1 Jul 2025
Abstract
In bulk liquid or on solid surfaces, nanobubbles (NBs) are gaseous domains at the nanoscale. They stand out due to their extended (meta)stability and great potential for use in practical settings. However, due to the high energy cost of bubble generation, maintenance issues,
[...] Read more.
In bulk liquid or on solid surfaces, nanobubbles (NBs) are gaseous domains at the nanoscale. They stand out due to their extended (meta)stability and great potential for use in practical settings. However, due to the high energy cost of bubble generation, maintenance issues, membrane bio-fouling, and the small actual population of NBs, significant advancements in nanobubble engineering through traditional mechanical generation approaches have been impeded thus far. With the introduction of the electric field approach to NB creation, which is based on electrostrictive NB generation from an incoming population of “electro-fragmented” meso-to micro bubbles (i.e., with bubble size broken down by the applied electric field), when properly engineered with a convective-flow turbulence profile, there have been noticeable improvements in solid-state operation and energy efficiency, even allowing for solar-powered deployment. Here, these innovative methods were applied to a selection of upstream and downstream activities in the oil–water–fuels nexus: advancing core flood tests, oil–water separation, boosting the performance of produced-water treatment, and improving the thermodynamic cycle efficiency and carbon footprint of internal combustion engines. It was found that the application of electric field NBs results in a superior performance in these disparate operations from a variety of perspectives; for instance, ~20 and 7% drops in surface tension for CO2- and air-NBs, respectively, a ~45% increase in core-flood yield for CO2-NBs and 55% for oil–water separation efficiency for air-NBs, a rough doubling of magnesium- and calcium-carbonate formation in produced-water treatment via CO2-NB addition, and air-NBs boosting diesel combustion efficiency by ~16%. This augurs well for NBs being a potent agent for sustainability in the oil and fuels sector (whether up-, mid-, or downstream), not least in terms of energy efficiency and environmental sustainability.
Full article
Open AccessArticle
Sustainable Production of Eco-Friendly, Low-Carbon, High-Octane Gasoline Biofuels Through a Synergistic Approach for Cleaner Transportation
by
Tamer M. M. Abdellatief, Ahmad Mustafa, Mohamed Koraiem M. Handawy, Muhammad Bakr Abdelghany and Xiongbo Duan
Fuels 2025, 6(3), 49; https://doi.org/10.3390/fuels6030049 - 23 Jun 2025
Abstract
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed
[...] Read more.
This research work seeks to introduce eco-friendly, low-carbon, and high-octane biofuel gasoline production using a synergistic approach. Four types of high-octane gasoline, including SynergyFuel-92, SynergyFuel-95, SynergyFuel-98, and SynergyFuel-100, were generated, emphasizing the deliberate combination of petroleum-derived gasoline fractions using reformate, isomerate, and delayed coking (DC) naphtha with octane-boosting compounds—bio-methanol and bio-ethanol. A set of tests have been performed to examine the effects of antiknock properties, density, oxidation stability, distillation range characteristics, hydrocarbon composition, vapor pressure, and the volatility index on gasoline blends. The experimental results indicated that the gasoline blends made from biofuel (SynergyFuel-92, -95, -98, and 100) showed adherence to important fuel quality criteria in the USA, Europe, and China. These blends had good characteristics, such as low quantities of benzene and sulfur, regulated levels of olefins and aromatics, and good distillation qualities. By fulfilling these strict regulations, Synergy Fuel is positioned as a competitive and eco-friendly substitute for traditional gasoline. The results reported that SynergyFuel-100 demonstrated the strongest hot-fuel-handling qualities and resistance to vapor lock among all the mentioned Synergy Fuels. Finally, the emergence of eco-friendly, low-carbon, and high-octane biofuel gasoline production with synergistic benefits is a big step in the direction of sustainable transportation.
Full article
(This article belongs to the Special Issue Sustainability Assessment of Renewable Fuels Production)
►▼
Show Figures

Graphical abstract
Open AccessArticle
Combustion Characteristics of Moxa Floss Under Nitrogen Atmosphere
by
Yukun Feng, Yifan Wu, Pengzhou Du, Yang Ma and Zhaoyi Zhuang
Fuels 2025, 6(2), 48; https://doi.org/10.3390/fuels6020048 - 13 Jun 2025
Abstract
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier
[...] Read more.
To investigate the combustion characteristics of moxa under a nitrogen atmosphere, this study employed an integrated approach combining experimental and theoretical analysis. Twelve moxa floss samples with different leaf-to-floss ratios, geographical origins, and storage durations were selected for thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR) of their carbonized products in nitrogen environment. Through TG-DTG analysis, the thermal degradation patterns of the twelve moxa floss samples under nitrogen atmosphere were systematically examined to elucidate their pyrolysis behaviors, with particular emphasis on the influence of pyrolysis temperature and leaf-to-floss ratio on combustion characteristics. The pyrolysis process occurred in three distinct stages, with the most significant mass loss (120–430 °C) observed in the second stage. Higher leaf–fiber ratios and longer storage years were found to promote more complete pyrolysis. Kinetic analysis was performed to fit thermogravimetric data, establishing a reaction kinetic model for moxa pyrolysis. Results indicated that samples with higher leaf–fiber ratios required greater activation energy, while storage duration showed negligible impact. Notably, Nanyang moxa demanded higher pyrolysis energy than Qichun moxa. FTIR analysis identified the primary components of carbonized products as water, ester compounds, flavonoids, and cellulose. These findings suggest that moxa carbonization products retain chemical reactivity, demonstrating potential applications in adsorption and catalysis processes.
Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
►▼
Show Figures

Figure 1
Open AccessCommunication
The Catalytic Hydrogenation of Phenanthrene: The Impact of Chrysotile and Coal Shale Catalysts
by
Murzabek Baikenov, Dariya Izbastenova, Yue Zhang, Xintai Su, Nazerke Balpanova, Almas Tusipkhan, Zeinep Akanova, Amirbek Moldabayev, Balzhan Tulebaeva and Gulzhan Taurbaeva
Fuels 2025, 6(2), 47; https://doi.org/10.3390/fuels6020047 - 12 Jun 2025
Abstract
►▼
Show Figures
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was
[...] Read more.
This paper presents the results of a study of the catalytic hydrogenation of phenanthrene using catalysts based on chrysotile modified with nickel and titanium (chrysotile/NiTi), as well as coal shale. Complex characterization of catalysts in terms of acid, texture and morphological properties was carried out. Pre-reduction in the catalysts has been found to increase the yield of partially and fully hydrogenated products, including tetrahydronaphthalene, trans-decalin and dihydrophenanthrene. Particular attention is paid to the role of coal shale as a donor source of hydrogen in thermolysis conditions. The results of hydrogenation revealed complex mechanisms of phenanthrene transformations, including partial saturation of aromatic rings, desulfurization and the formation of alkyl-substituted compounds. The obtained data emphasize the prospects of using the studied catalysts in the processes of processing heavy and solid hydrocarbon raw materials, which opens up opportunities for creating new technologies for the production of liquid fuel.
Full article

Figure 1
Open AccessArticle
Empirical Comparison of Flow Field Designs for Direct Ethanol-Based, High-Temperature PEM Fuel Cells
by
Prantik Roy Chowdhury and Adam C. Gladen
Fuels 2025, 6(2), 46; https://doi.org/10.3390/fuels6020046 - 5 Jun 2025
Abstract
►▼
Show Figures
This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fuel cells
[...] Read more.
This study experimentally investigates various flow field designs for a direct ethanol-based proton exchange membrane (PEM) fuel cell operated at a temperature above the vaporization temperature of water. It expands the designs of flow fields investigated for high-temperature (HT) direct ethanol fuel cells by comparing four designs. It investigates the performance of these designs at various ethanol concentrations and flow rates. A series of polarization, constant current, and impedance spectroscopy experiments were carried out at different combinations of operating conditions. The result shows that all flow fields provide poorer performance at a high ethanol concentration (6 M), regardless of ethanol inlet flow rates. At a low concentration (3 M), the 2-channel spiral flow field exhibits higher cell power output (12–18% higher) with less mass transport loss and charge transfer resistance compared to other flow fields, although it has some voltage instability. As such, it is identified as a promising design, particularly for higher-power applications. The 4-channel serpentine, dual-triangle sandwich, and hybrid flow fields offer similar cell power output (max power: ~23 mW/cm2) and cell potentials. However, the cell potential instability and mass transport losses are higher in the hybrid flow field compared to the other two designs. Thus, it is not as promising a design for ethanol-based HT-PEM fuel cells. Since the dual-triangle has similar performance to the 4-channel serpentine, it could be an alternative to the serpentine for ethanol-based HT-PEM fuel cells.
Full article

Figure 1
Open AccessReview
Consequence Analysis of LPG-Related Hazards: Ensuring Safe Transitions to Cleaner Energy
by
Carolina Ardila-Suarez, Jean-Paul Lacoursière, Gervais Soucy and Bruna Rego de Vasconcelos
Fuels 2025, 6(2), 45; https://doi.org/10.3390/fuels6020045 - 5 Jun 2025
Abstract
►▼
Show Figures
Countries worldwide are focused on the objective of zero emissions by 2050. However, the accelerated implementation of clean technologies has had some drawbacks, remarkably those related to safety issues. Liquefied petroleum gas (LPG) emerges as a transition fuel in this context, considering the
[...] Read more.
Countries worldwide are focused on the objective of zero emissions by 2050. However, the accelerated implementation of clean technologies has had some drawbacks, remarkably those related to safety issues. Liquefied petroleum gas (LPG) emerges as a transition fuel in this context, considering the following two aspects. First, LPG is a fuel that has environmental advantages compared to other fossil fuels, so the extension of coverage as a replacement fuel is a key factor. Second, LPG has a well-developed storage and transportation infrastructure that can be used, sometimes without modifications, for clean fuels, helping their implementation. Therefore, the safety analysis and the study of the consequences related to the hazards of LPG is a current subject that contributes, through all the tools reviewed in this article, to not only reduce the risks of this fuel but also to connect with the safety issues of clean fuels. This review article provides a comprehensive overview through consequence modeling tools, highlighting computational fluid dynamics (CFD) and machine learning to pave the way for the full implementation of clean fuels that will power the future of humanity.
Full article

Figure 1
Open AccessArticle
Potential of DMC and PODE as Fuel Additives for Industrial Diesel Engines
by
Nicholas O’Connell, Dominik Stümpfl, Rudolf Höß and Raphael Lechner
Fuels 2025, 6(2), 44; https://doi.org/10.3390/fuels6020044 - 4 Jun 2025
Abstract
►▼
Show Figures
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In
[...] Read more.
Dimethyl carbonate (DMC) and polyoxymethylene dimethyl ethers (PODE also known as OME) are possible diesel additives that can be produced sustainably using green methanol. DMC can be produced from CO2 and methanol, while PODE can be produced from methanol and formaldehyde. In this study both DMC and PODE were investigated as drop-in diesel fuel additives regarding material compatibility, injection behavior, as well as particle and exhaust emissions. Both DMC and PODE are known to be incompatible with certain materials used as seals in the fuel injection system. Therefore, the material compatibility of both neat DMC and PODE as well as blends with B0 was investigated, with both PFTE and FFKM showing good compatibility. The hydraulic injection behavior of DMC–diesel and PODE–diesel blends was investigated experimentally, showing the need for compensating injection quantities for DMC and PODE blends to match neat diesel power output due to their lower calorific values. Energetic compensation can be achieved by higher injection pressures or longer injection durations. Engine tests have been conducted with both DMC–diesel and PODE–diesel blends, demonstrating the potential to mitigate the particle–NOX trade-off.
Full article

Figure 1
Open AccessArticle
Heavy Fuel Oil Quality Dependence on Blend Composition, Hydrocracker Conversion, and Petroleum Basket
by
Sotir Sotirov, Evdokia Sotirova, Rosen Dinkov, Dicho Stratiev, Ivelina Shiskova, Iliyan Kolev, Georgi Argirov, Georgi Georgiev, Vesselina Bureva, Krassimir Atanassov, Radoslava Nikolova, Anife Veli, Svetoslav Nenov, Denis Dichev Stratiev and Svetlin Vasilev
Fuels 2025, 6(2), 43; https://doi.org/10.3390/fuels6020043 - 4 Jun 2025
Abstract
►▼
Show Figures
The production of very-low-sulfur residual fuel oil is a great challenge for modern petroleum refining because of the instability issues caused by blending incompatible relatively high-sulfur residual oils and ultra-low-sulfur light distillates. Another obstacle in the production of very-low-sulfur residual fuel oil using
[...] Read more.
The production of very-low-sulfur residual fuel oil is a great challenge for modern petroleum refining because of the instability issues caused by blending incompatible relatively high-sulfur residual oils and ultra-low-sulfur light distillates. Another obstacle in the production of very-low-sulfur residual fuel oil using hydroprocessing technology is the contradiction of hydrodesulfurization with hydrodemetallization, as well as the hydrodeasphaltization functions of the catalytic system used. Therefore, the production of very-low-sulfur residual fuel oil by employing hydroprocessing could be achieved by finding an appropriate residual oil to be hydroprocessed and optimal operating conditions and by controlling catalyst system condition management. In the current study, data on the characteristics of 120 samples of heavy fuel oils produced regularly over a period of 10 years from a high-complexity refinery utilizing H–oil vacuum residue hydrocrackers in its processing scheme, the crude oils refined during their production, the recipes of the heavy fuel oils, and the level of H–oil vacuum residue conversion have been analyzed by using intercriteria and regression analyses. Artificial neural network models were developed to predict the characteristics of hydrocracked vacuum residues, the main component for the production of heavy fuel oil. It was found that stable very-low-sulfur residual fuel oil can be manufactured from crude oils whose sulfur content is no higher than 0.9 wt.% by using ebullated bed hydrocracking technology. The diluents used to reduce residue viscosity were highly aromatic FCC gas oils, and the hydrodemetallization rate was higher than 93%.
Full article

Figure 1
Open AccessReview
A Comparative Study of Major Risk Assessment (RA) Frameworks in Geologic Carbon Storage (GCS)
by
Elvin Hajiyev, Marshall Watson, Hossein Emadi, Bassel Eissa, Athar Hussain, Abdul Rehman Baig and Abdulrahman Shahin
Fuels 2025, 6(2), 42; https://doi.org/10.3390/fuels6020042 - 4 Jun 2025
Cited by 1
Abstract
►▼
Show Figures
Carbon Capture and Storage (CCS) technology presents a practical solution for reducing industrial carbon dioxide (CO2) emissions through underground anthropogenic CO2 storage in depleted hydrocarbon reservoirs. The long-term storage efficiency faces several CO2 leakage challenges that need to be
[...] Read more.
Carbon Capture and Storage (CCS) technology presents a practical solution for reducing industrial carbon dioxide (CO2) emissions through underground anthropogenic CO2 storage in depleted hydrocarbon reservoirs. The long-term storage efficiency faces several CO2 leakage challenges that need to be addressed in the planning phase of the CCS project. Thus, effective risk assessment (RA) methodologies are crucial for ensuring safety, regulatory compliance, and public acceptance of CCS projects. This review examines RA parts and their corresponding technical and non-technical challenges. The analysis critically compares over 20 qualitative, semi-quantitative, quantitative, and hybrid RA techniques employed throughout GCS operations. Available quantitative RA tools do not deliver dependable results because they require technical data that become available late in the CCS project development process. Qualitative approaches work well for the initial screening of storage sites with limited data available, yet quantitative methods enable quantification of CO2 leakage. For the first time, a comparative analysis of two integrated assessment tools is presented in this paper. The techniques achieve success based on high-quality data and analysis of existing technical and non-technical challenges which this paper examines. The comparative analysis outlines the limitations and advantages of every methodology studied and emphasizes the need for integrated hybrid frameworks to boost decision-making in the RA process. Future research should focus on creating or improving existing hybrid frameworks for late-stage RA while utilizing qualitative frameworks in the initial site screening stage to advance GSC’s safe and effective implementation.
Full article

Figure 1
Open AccessArticle
Optimized Biochar from Chicken Manure via Hydrothermal Activation and Catalytic HTC: Properties and CO2 Reduction Potential
by
Seong-Yeun Yoo, Thi. Thu-Trang Ho, Ahmad Nadeem, Seong-Su Kim, Kangil Choe and Jai-Young Lee
Fuels 2025, 6(2), 41; https://doi.org/10.3390/fuels6020041 - 1 Jun 2025
Abstract
Chicken manure (CM) is a nutrient-rich but environmentally problematic biomass that requires sustainable management. This study applied a three-step process consisting of hydrothermal activation (ZnCl2 or H3PO4), catalytic hydrothermal carbonization (HCl or FeCl3), and low-temperature pyrolysis
[...] Read more.
Chicken manure (CM) is a nutrient-rich but environmentally problematic biomass that requires sustainable management. This study applied a three-step process consisting of hydrothermal activation (ZnCl2 or H3PO4), catalytic hydrothermal carbonization (HCl or FeCl3), and low-temperature pyrolysis (250 °C) to develop an energy-efficient method for producing biochar. The resulting biochars were systematically analyzed for their physicochemical properties, heavy metal content, and carbon sequestration potential, and compared with conventional pyrolysis-based biochars. Among the tested samples, the biochar produced via H3PO4 activation and HCl-catalyzed HTC [P-HTC(HCl)] exhibited the most favorable characteristics, including the highest carbon content (59.5 wt.%) and the lowest H/C ratio (0.65). As a result, it achieved the highest total potential carbon (TPC, 158.8 gcarbon/kgbiochar) and CO2 reduction potential (CRP, 465.9 gCO2-eq/kgbiochar), attributed to the strong dehydration and decarboxylation reactions and effective inorganic removal induced by Brønsted acid action. In contrast, conventional pyrolysis biochars showed significantly higher concentrations of heavy metals—up to 633 mg/kg of Cu and 2331 mg/kg of Zn—due to thermal concentration effects, whereas P-HTC(HCl) biochar presented a more balanced and environmentally acceptable heavy metal profile. In conclusion, the proposed low-temperature hydrothermal-assisted process demonstrates great potential for producing high-performance biochar from chicken manure with enhanced environmental safety and carbon storage efficiency.
Full article
(This article belongs to the Special Issue Current Initiatives on Carbon Dioxide Utilization (CDU) for Fuel Production)
►▼
Show Figures

Figure 1
Open AccessArticle
Research on the Combustion of Mixed Biomass Pellets in a Domestic Boiler
by
Penka Zlateva, Angel Terziev, Kalin Krumov, Mariana Murzova and Nevena Mileva
Fuels 2025, 6(2), 40; https://doi.org/10.3390/fuels6020040 - 21 May 2025
Abstract
The present study analyzes the combustion process of mixed biomass pellets in a domestic boiler. For the purposes of the research, experimental measurements of flue gases are combined with numerical simulations based on computational fluid dynamics (CFD). Special attention is given to the
[...] Read more.
The present study analyzes the combustion process of mixed biomass pellets in a domestic boiler. For the purposes of the research, experimental measurements of flue gases are combined with numerical simulations based on computational fluid dynamics (CFD). Special attention is given to the impact of the ratio between primary and secondary air on the combustion process, emission characteristics, and thermal balance. The results show that an air distribution ratio of 60/40 (primary/secondary) leads to more complete combustion, reducing emissions of carbon monoxide (CO) and nitrogen oxides (NOx), while also improving the efficiency of the boiler. The analysis of the numerical modeling results shows that CO emissions decrease by 12% and NOx emissions by 27%. The calculated model is validated using experimental data on flue gas temperature, oxygen (O2) and carbon dioxide (CO2) concentrations, and combustion efficiency, and a high degree of correspondence between theoretical and actual measurements is established. The simulations reveal the dynamics of the temperature field, the movement of flue gases, and the role of turbulence in the combustion chamber. Optimization of the air distribution is proven to improve the combustion process and reduce the harmful emissions generated. The obtained results highlight the potential of mixed biomass pellets as a sustainable alternative to conventional fuels, provided that combustion parameters are precisely regulated. They can serve as a foundation for the enhancement of biomass-based heating systems in order to achieve higher efficiency and environmental sustainability. A market research study is also conducted, revealing that mixed pellets are preferred due to their high calorific value, low cost, and low ash content.
Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
►▼
Show Figures

Figure 1
Open AccessArticle
Flexible Green Ammonia Production: Impact of Process Design on the Levelized Cost of Ammonia
by
Cecilia Pistolesi, Alberto Giaconia, Claudia Bassano and Marcello De Falco
Fuels 2025, 6(2), 39; https://doi.org/10.3390/fuels6020039 - 21 May 2025
Abstract
►▼
Show Figures
This study evaluates the economic feasibility of flexible, renewable ammonia production in Italy through a comprehensive sensitivity analysis of the levelized cost of ammonia (LCOA). Ammonia is produced through Haber–Bosch synthesis from green hydrogen and nitrogen coming from alkaline electrolysis and cryogenic air
[...] Read more.
This study evaluates the economic feasibility of flexible, renewable ammonia production in Italy through a comprehensive sensitivity analysis of the levelized cost of ammonia (LCOA). Ammonia is produced through Haber–Bosch synthesis from green hydrogen and nitrogen coming from alkaline electrolysis and cryogenic air separation, respectively. The analysis examines the impact of key parameters such as renewable source peak power, Haber–Bosch reactor flexibility, energy mix, electrochemical and hydrogen storage, on the final production cost. The location considered for the PV and wind power output is Southern Italy. The results show that a wind-driven system with minimal battery storage and a flexibility factor (ratio between the minimum operating capacity and the nominal capacity of the plant) of 20% offers the most cost-effective solution, but production is scaled down to 64 tpd. With the 2030 cost structure, battery storage offers better integration with wind systems and flexible operation, even at low levels of turndown. For different combinations of process design choices and flexibility, the optimal LCOA for a green ammonia production is approximately 0.59 USD/kgNH3 in 2050. This cost of production could be competitive with grey ammonia, provided that a carbon emission allowance of USD 0.12/kgCO2 is applied.
Full article

Figure 1
Open AccessArticle
Experimental and Aspen Simulation Study of the Co-Pyrolysis of Refuse-Derived Fuel and Oil Shale: Product Yields and Char Characterization
by
Hasan J. Al-Abedi, Joseph D. Smith, Haider Al-Rubaye, Paul C. Ani, Caleb Moellenhoff, Tyler McLeland and Katarina Zagorac
Fuels 2025, 6(2), 38; https://doi.org/10.3390/fuels6020038 - 15 May 2025
Abstract
►▼
Show Figures
This research delves into the co-pyrolysis of refuse-derived fuel (RDF) and oil shale (OS), utilizing a 50% weight ratio for each component. The study employs a fixed-bed reactor, augmented by electrical kiln heating, to conduct the co-pyrolysis process. A significant aspect of this
[...] Read more.
This research delves into the co-pyrolysis of refuse-derived fuel (RDF) and oil shale (OS), utilizing a 50% weight ratio for each component. The study employs a fixed-bed reactor, augmented by electrical kiln heating, to conduct the co-pyrolysis process. A significant aspect of this research is the use of Aspen Plus software for process simulation, with the simulated results undergoing validation through experimental data. A commendable correlation was observed between the experimental outcomes and the model predictions, underscoring the reliability of the simulation approach. The investigation reveals distinct product yields from the pyrolysis of 100% RDF and 100% OS. Specifically, the pyrolysis of pure RDF yielded 45.26% gas, 20.67% oil, and 34.07% char by weight. In contrast, the pyrolysis of pure OS resulted in 14.51% gas, 8.32% liquid, and a significant 77.61% char by weight. The co-pyrolysis of RDF and OS in a 50% blend altered the product distribution to 31.98% gas, 12.58% liquid, and 55.09% char by weight. Furthermore, the Aspen Plus simulation model aligned closely with these findings, predicting yields of 31.40% gas, 11.9% oil, and 56.6% char by weight for the RDF-OS blend. This study not only elucidates the co-pyrolysis behavior of RDF and OS but also contributes valuable insights into the potential of these materials to address the pressing issue of plastic waste management and energy resource utilization. The findings underscore the efficacy of RDF and OS co-pyrolysis as a viable strategy for enhancing the value extraction from waste and underutilized energy resources, presenting a promising avenue for environmental and energy sustainability.
Full article

Figure 1
Open AccessArticle
Feasibility Analysis of the New Generation of Fuels in the Maritime Sector
by
José Miguel Mahía-Prados, Ignacio Arias-Fernández, Manuel Romero Gómez and Sandrina Pereira
Fuels 2025, 6(2), 37; https://doi.org/10.3390/fuels6020037 - 8 May 2025
Abstract
►▼
Show Figures
The main motivation for this paper was the lack of studies and comparative analyses on the new generation of alternative fuels in the marine sector, such as methane, methanol, ammonia and hydrogen. Firstly, a review of international legislation and the status of these
[...] Read more.
The main motivation for this paper was the lack of studies and comparative analyses on the new generation of alternative fuels in the marine sector, such as methane, methanol, ammonia and hydrogen. Firstly, a review of international legislation and the status of these new fuels was carried out, highlighting the current situation and the different existing alternatives for reducing greenhouse gas (GHG) emissions. In addition, the status and evolution of the current order book for ships since the beginning of this decade were used for this analysis. Secondly, each fuel and its impact on the geometry and operation of the engine were evaluated in a theoretical engine called MW-1. Lastly, an economic analysis of the current situation of each fuel and its availability in the sector was carried out in order to select, using the indicated methodology, the most viable fuel at present to replace traditional fuels with a view to the decarbonization set for 2050.
Full article

Figure 1
Open AccessArticle
Comparison of the Methods for Predicting the Critical Temperature and Critical Pressure of Petroleum Fractions and Individual Hydrocarbons
by
Evdokia Sotirova, Svetlin Vasilev, Dicho Stratiev, Ivelina Shishkova, Sotir Sotirov, Radoslava Nikolova, Anife Veli, Veselina Bureva, Krassimir Atanassov, Vanya Georgieva, Denis Stratiev and Svetoslav Nenov
Fuels 2025, 6(2), 36; https://doi.org/10.3390/fuels6020036 - 7 May 2025
Cited by 1
Abstract
►▼
Show Figures
All modern process simulators rely on thermodynamic methods to estimate physical properties and calculate phase equilibria. The critical properties of individual components or pseudo-components, which represent undefined mixtures, play a crucial role in these calculations. However, the chemical compositions and characteristics of whole
[...] Read more.
All modern process simulators rely on thermodynamic methods to estimate physical properties and calculate phase equilibria. The critical properties of individual components or pseudo-components, which represent undefined mixtures, play a crucial role in these calculations. However, the chemical compositions and characteristics of whole crude oils, petroleum fractions, and fuels, which are very complex mixtures of individual hydrocarbons, can vary significantly depending on the specific crude oil and the processing involved. For instance, straight-run petroleum fractions differ from those obtained through cracking processes due to differences in unsaturated hydrocarbon content. Consequently, effective methods for predicting critical temperature and pressure must account for a wide range of compositional scenarios. To address this challenge, we utilized a database of 176 individual hydrocarbons to evaluate the existing correlations for critical temperature and pressure calculations. Intercriteria analysis was performed to evaluate the relations between the different variables to be used for critical temperature and pressure predictions. Additionally, we proposed new correlations and ANN models for these properties and assessed their performance. Our study aims to provide robust predictive models that can accurately estimate critical properties across diverse petroleum fractions and compositions.
Full article

Figure 1
Open AccessArticle
Hydrocracking of Various Vacuum Residues
by
Dicho Stratiev
Fuels 2025, 6(2), 35; https://doi.org/10.3390/fuels6020035 - 7 May 2025
Cited by 1
Abstract
►▼
Show Figures
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point
[...] Read more.
The residue conversion processes, coking, visbreaking, and fluid catalytic cracking (FCC), have demonstrated that feedstock quality is the single factor that most affects process performance. While, for the FCC, it is known that the heavy oil conversion at a maximum gasoline yield point can vary between 50 and 85 wt. %, for the vacuum residue hydrocracking, no reports have appeared yet to reveal the dependence of conversion on the quality of vacuum residue being hydrocracked. In order to search for such a dependence, eight vacuum residues derived from medium, heavy, and extra heavy crude oils have been hydrocracked in a laboratory unit at different reaction temperatures. The current study has witnessed that the vacuum residue hydrocracking obeys the same rule as that of the other residue conversion processes, confirming that the feedstock quality has a great influence on the process performance. A conversion variation between 45 and 85 wt. % can be observed when the sediment content in the hydrocracked atmospheric residue is within the acceptable limit, guaranteeing the planned cycle length. An intercriteria analysis was performed, and it revealed that the vacuum residue conversion has negative consonances with the contents of nitrogen and metals. Correlations were developed which predict the conversion at constant operating conditions within the uncertainty of conversion measurement of 1.7 wt. % and correlation coefficient of 0.964. The conversion at constant hydrocracked atmospheric residue (HCAR) sediment content was predicted with a correlation coefficient of 0.985. The correlations developed in this work disclosed that the higher the contents of metals, nitrogen, and asphaltenes, and the lower the content of sulfur, the lower the conversion in the hydrocracking process is. It was also shown that vacuum residues, which have the same reactivity (the same conversion at identical operating conditions), can indicate significant difference in the conversion at the same HCAR sediment content due to their diverse propensity to form sediments in the process of hydrocracking.
Full article

Figure 1
Open AccessArticle
The Development of a Kinetic Model for Biochar Gasification with CO2: Comparison Between a Thermogravimetric Analyzer and a Fluidized Bed Reactor
by
Luis Reyes, Michael Jabbour, Lokmane Abdelouahed and Bechara Taouk
Fuels 2025, 6(2), 34; https://doi.org/10.3390/fuels6020034 - 3 May 2025
Abstract
►▼
Show Figures
This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO2
[...] Read more.
This study presents the development of a kinetic model for the gasification of biochar with carbon dioxide and compares the results obtained using a thermogravimetric analyzer (TGA) and a fluidized bed reactor (FBR). The kinetic experiments investigated the effects of the CO2 partial pressure (0.33–1 atm), temperature (800–1000 °C), and CO2/C ratio (3.5–10.5). Three structural models, the shrinking core model (SCM), volumetric model (VM), and power-law model (PLM), were evaluated for their ability to predict experimental results. The results demonstrated that increasing the temperature, CO2 partial pressure, and CO2/C ratio enhanced the gasification rate, reducing the time required for complete biochar conversion. The apparent activation energy for both reactors was similar (156–159 MJ/kmol), with reaction orders of 0.4–0.49. However, the kinetic models varied significantly between setups. In the TGA, the PLM provided the best fit to experimental data, with standard deviations of 2.6–9%, while in the FBR, the SCM was most accurate, yielding an average deviation of 1.5%. The SCM effectively described the layer-by-layer char consumption, where gasification slowed at high conversion levels. Conversely, the PLM for the TGA revealed a unique mathematical function not aligned with traditional models, indicating localized reaction behaviors. This study highlights the inability to directly extrapolate TGA-derived kinetic models to FBR systems, underscoring the distinct mechanisms governing char consumption in each reactor type. These findings provide critical insights for optimizing biochar gasification across diverse reactor configurations.
Full article

Figure 1
Open AccessArticle
Real-Time Drilling Performance Optimization Using Automated Penetration Rate Algorithms with Vibration Control
by
Dan Sui
Fuels 2025, 6(2), 33; https://doi.org/10.3390/fuels6020033 - 2 May 2025
Abstract
►▼
Show Figures
Automation has transformed process optimization across industries by enhancing efficiency, safety, and reliability while minimizing human intervention. This paper presents a model-based optimization strategy tailored for automated drilling operations, focusing on maximizing performance while maintaining operational safety. The approach employs real-time control of
[...] Read more.
Automation has transformed process optimization across industries by enhancing efficiency, safety, and reliability while minimizing human intervention. This paper presents a model-based optimization strategy tailored for automated drilling operations, focusing on maximizing performance while maintaining operational safety. The approach employs real-time control of key parameters, such as applied force and rotational speed, through a robust closed-loop control system. An adaptive detection algorithm is incorporated to dynamically adjust operational parameters when encountering changing conditions. This real-time adaptability ensures efficient performance under diverse scenarios while mitigating risks. In the simulation, the data used for modeling drillstring dynamics are sourced from a publicly available benchmarking dataset, which provides a reliable basis for evaluation. From the simulation results, it is clear that the drilling optimization framework is capable of achieving high performance with lower energy consumption while maintaining effective vibration mitigation and prevention. This balance is essential for ensuring operational efficiency and tool longevity in dynamic environments. The findings highlight the potential of this framework to enhance automated systems in energy, construction, and other sectors requiring precise control of dynamic mechanical processes.
Full article

Figure 1
Highly Accessed Articles
Latest Books
E-Mail Alert
News
Topics
Topic in
Catalysts, Energies, Fuels, Hydrogen, Nanoenergy Advances
Hydrogen Energy Technologies, 3rd Edition
Topic Editors: Bahman Shabani, Mahesh SuryawanshiDeadline: 1 November 2026

Conferences
Special Issues
Special Issue in
Fuels
Current Initiatives on Carbon Dioxide Utilization (CDU) for Fuel Production
Guest Editors: Athanasios Tiliakos, Adriana MarinoiuDeadline: 15 August 2025
Special Issue in
Fuels
Emerging Sustainable Technologies in Biofuel Production
Guest Editors: Gaetano Zuccaro, Neha AroraDeadline: 30 August 2025
Special Issue in
Fuels
Biofuels and Bioenergy: New Advances and Challenges
Guest Editor: Nikolaos KokkinosDeadline: 1 September 2025
Special Issue in
Fuels
Sustainable Jet Fuels from Bio-Based Resources
Guest Editor: Ananda S. AmarasekaraDeadline: 15 October 2025