Open AccessArticle
Changes in Material Properties and Damage Mechanism of Plate Ballastless Track Under Fire and High Temperature
by
Hao Jin, Yike Yang, Xinxin Zhao, Yongjian Pan, Jinhui Chu, Shuming Li, Shenglin Xu and Yulin Feng
Buildings 2025, 15(12), 1987; https://doi.org/10.3390/buildings15121987 (registering DOI) - 9 Jun 2025
Abstract
The service status of rail, fasteners and track slabs is the key determinant of whether the ballastless track is ready for traffic after a fire. The track slab rail support bolt anchoring performance and the shoulder service performance damaged by fire were tested.
[...] Read more.
The service status of rail, fasteners and track slabs is the key determinant of whether the ballastless track is ready for traffic after a fire. The track slab rail support bolt anchoring performance and the shoulder service performance damaged by fire were tested. Experiments of ballastless track slab concrete burned at different high temperatures were carried out to compare macro- and microstructural properties of the concrete under high-temperature burning to study the microstructure of hydration products after high-temperature burning and reveal the damage mechanism of the track slab concrete after a fire. The results show that the fire damage to the rail and fastener is mainly deformations, fractures and strength reduction. The degree of the fire damage of the mortar layer and base slab is much lower than that of the track slab. The main fire damage to the concrete is track and base slab cracks, spalling and gaps. The degree of the fire damage to the mortar layer and base slab is much lower than that of the track slab. The fire damage of the track slab concrete is mainly bursts, and the concrete cracks, spalling and deterioration occur layer by layer from the outside to inside. The shoulder injury is the most serious, the shear resistance is greatly reduced, the rail support is protected by the rail and fastener, the impact of the fire damage is small and the bolt anchoring performance was not decreased. The position of the track slab’s inside damage corresponds to the surface damage position. The steel bar inside the track slab is in good condition, and there is no obvious damage. The bulk expansion of the ballastless track concrete was caused by the expansion of aggregates under fire. When the expansion of aggregates is constrained by the shrinkage of hydration products, greater internal stress is generated, which is the main reason for the cracking or bursting of the ballastless track slab concrete under high temperatures.
Full article
►▼
Show Figures